3,275 research outputs found
NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo.
NLRs (nucleotide-binding domain [NBD] leucine-rich repeat [LRR]-containing proteins) exhibit diverse functions in innate and adaptive immunity. NAIPs (NLR family, apoptosis inhibitory proteins) are NLRs that appear to function as cytosolic immunoreceptors for specific bacterial proteins, including flagellin and the inner rod and needle proteins of bacterial type III secretion systems (T3SSs). Despite strong biochemical evidence implicating NAIPs in specific detection of bacterial ligands, genetic evidence has been lacking. Here we report the use of CRISPR/Cas9 to generate Naip1(-/-) and Naip2(-/-) mice, as well as Naip1-6(Δ/Δ) mice lacking all functional Naip genes. By challenging Naip1(-/-) or Naip2(-/-) mice with specific bacterial ligands in vivo, we demonstrate that Naip1 is uniquely required to detect T3SS needle protein and Naip2 is uniquely required to detect T3SS inner rod protein, but neither Naip1 nor Naip2 is required for detection of flagellin. Previously generated Naip5(-/-) mice retain some residual responsiveness to flagellin in vivo, whereas Naip1-6(Δ/Δ) mice fail to respond to cytosolic flagellin, consistent with previous biochemical data implicating NAIP6 in flagellin detection. Our results provide genetic evidence that specific NAIP proteins function to detect specific bacterial proteins in vivo
Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine
The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in human
Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature
Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature
Biallelic PRMT7 pathogenic variants are associated with a recognizable syndromic neurodevelopmental disorder with short stature, obesity, and craniofacial and digital abnormalities
PURPOSE
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder.
METHODS
We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature.
RESULTS
The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss.
CONCLUSION
This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities
FIRE-9 - PORT / AIO-KRK-0418: a prospective, randomized, open, multicenter Phase III trial to investigate the efficacy of adjuvant/additive chemotherapy in patients with definitely-treated metastatic colorectal cancer
BACKGROUND
Additive/adjuvant chemotherapy as concept after local treatment of colorectal metastases has not been proven to be successful by phase III trials. Accordingly, a standard of care to improve relapse rates and long-term survival is not established and adjuvant chemotherapy cannot be recommended as a standard therapy due to limited evidence in literature. The PORT trial aims to generate evidence that post-resection/ablation/radiation chemotherapy improves the survival in patients with metastatic colorectal cancer.
METHODS
Patients to be included into this trial must have synchronous or metachronous metastases of colorectal cancer-either resected (R0 or R1) and/or effectively treated by ablation or radiation within 3-10 weeks before randomization-and have the primary tumor resected, without radiographic evidence of active metastatic disease at study entry. The primary endpoint of the trial is progression-free survival after 24 months, secondary endpoints include overall survival, safety, quality of life, treatments (including efficacy) beyond study participation, translational endpoints, and others. One arm of the study comprising 2/3 of the population will be treated for 6 months with modified FOLFOXIRI or modified FOLFOX6 (investigator´s choice, depending on the performance status of the patients but determined before randomization), while the other arm (1/3 of the population) will be observed and undergo scheduled follow-up computed tomography scans according to the interventional arm.
DISCUSSION
Optimal oncological management after removal of colorectal metastases is unclear. The PORT trial aims to generate evidence that additive/adjuvant chemotherapy after definitive treatment of colorectal metastases improves progression free and overall survival in patients with colorectal cancer.
TRIAL REGISTRATION
This study is registered with clinicaltrials.gov ( NCT05008809 ) and EudraCT (2020-006,144-18)
The Anatomy, Histology and Physiology of the Healthy and Lame Equine Hoof
Satisfactory investigations of the equine foot appear to be limited by the histo-morphological complexity of internal hoof structures. Foot lameness is considered to be one of the most debilitating pathological disorders of the equine foot. In most species, foot lameness is traditionally linked to hoof deformity, and a set of molecular events have been defined in relation to the disease. So far, there is controversy regarding the incidence of foot lameness in horses, as it is unclear whether it is foot lameness that triggers hoof distortions or vice-versa. In order to develop a better understanding of foot lameness, we review both the healthy and lame foot anatomy, cell biology and vascularisation and using micro-computed tomography show new methods of visualising internal structures within the equine foot
PhenoScore: AI-based phenomics to quantify rare disease and genetic variation
While both molecular and phenotypic data are essential when interpreting genetic variants, prediction scores (CADD, PolyPhen, and SIFT) have focused on molecular details to evaluate pathogenicity — omitting phenotypic features. To unlock the full potential of phenotypic data, we developed PhenoScore: an open source, artificial intelligence-based phenomics framework. PhenoScore combines facial recognition technology with Human Phenotype Ontology (HPO) data analysis to quantify phenotypic similarity at both the level of individual patients as well as of cohorts. We prove PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 25 out of 26 investigated genetic syndromes against clinical features observed in individuals with other neurodevelopmental disorders. Moreover, PhenoScore was able to provide objective clinical evidence for two distinct ADNP-related phenotypes, that had already been established functionally, but not yet phenotypically. Hence, PhenoScore will not only be of use to unbiasedly quantify phenotypes to assist genomic variant interpretation at the individual level, such as for reclassifying variants of unknown clinical significance, but is also of importance for detailed genotype-phenotype studies
Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot
Purpose: Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear.
Methods: We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF.
Results: Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11).
Conclusion: Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF
Lipid biophysics and/or soft matter-inspired approach for controlling enveloped virus infectivity
Proven as a natural barrier against viral infection, pulmonary surfactant phospholipids have a biophysical and immunological role within the respiratory system, acting against microorganisms including viruses. Enveloped viruses have, in common, an outer bilayer membrane that forms the underlying structure for viral membrane proteins to function in an optimal way to ensure infectivity. Perturbating the membrane of viruses using exogenous lipids can be envisioned as a generic way to reduce their infectivity. In this context, the potential of exogenous lipids to be used against enveloped virus infectivity would be indicated by the resulting physical stress imposed to the viral membrane, and conical lipids, i.e. lyso-lipids, would be expected to generate stronger biophysical disturbances. We confirm that when treated with lyso-lipids the infectivity three strains of influenza virus (avian H2N3, equine H3N8 or pandemic human influenza H1N1) is reduced by up to 99% in a cell-based model. By contrast, lipids with a similar head group but two aliphatic chains were less effective (reducing infection by only 40–50%). This work opens a new path to merge concepts from different research fields, i.e. ‘soft matter physics' and virology
- …