17 research outputs found

    Rapid and Long-Lasting Increase in Sites for Synapse Assembly during Late-Phase Potentiation in Rat Hippocampal Neurons

    Get PDF
    Long-term potentiation in hippocampal neurons has stages that correspond to the stages of learning and memory. Early-phase (10–30 min) potentiation is accompanied by rapid increases in clusters or puncta of presynaptic and postsynaptic proteins, which depend on actin polymerization but not on protein synthesis. We have now examined changes in pre- and postsynaptic puncta and structures during glutamate-induced late-phase (3 hr) potentiation in cultured hippocampal neurons. We find that (1) the potentiation is accompanied by long-lasting maintenance of the increases in puncta, which depends on protein synthesis, (2) most of the puncta and synaptic structures are very dynamic, continually assembling and disassembling at sites that are more stable than the puncta or structures themselves, (3) the increase in presynaptic puncta appears to be due to both rapid and more gradual increases in the number of sites where the puncta may form, and also to the stabilization of existing puncta, (4) under control conditions, puncta of postsynaptic proteins behave similarly to puncta of presynaptic proteins and share sites with them, and (5) the increase in presynaptic puncta is accompanied by a similar increase in presumably presynaptic structures, which may form at distinct as well as shared sites. The new sites could contribute to the transition between the early and late phase mechanisms of plasticity by serving as seeds for the formation and maintenance of new synapses, thus acting as local “tags” for protein synthesis-dependent synaptic growth during late-phase plasticity

    Effect of chemical treatment of MSWI bottom ash for its use in concrete

    No full text
    In this paper, municipal solid waste incineration (MSWI) bottom ash was characterised before and after chemica treatment and the effect of ash addition on the performance of concrete as a partial replacement of fine aggregate was evaluated. The chemical treatment aimed to eliminate the side effect of MSWI ash - the creation of a network of bubbles - which can eventually lead to a significant reduction of the overall performance of concrete Petrographic examinations, energy dispersive X-ray spectroscopy and X-ray diffraction, were carried out to chemically characterise the MSWI bottom ash. The mechanical performance of the ash-combined concrete was evaluated by measuring its compressive strength. Analysis of the measured data demonstrates that the chemica treatment successfully transformed metallic aluminium in the ash into a stable form and hence expansion of the concrete due to hydrogen gas evolution was no longer detected in the concrete containing treated ash Consequently, compared with specimens with untreated ash, concrete specimens with treated bottom ash showed improved performance
    corecore