340 research outputs found

    Vector-axial vector correlators in weak electric field and the holographic dynamics of the chiral condensate

    Get PDF
    The transverse part of the vector-axial vector flavor current correlator in the presence of weak external electric field is studied using holography. The correlator is calculated using a bottom-up model arxiv:1003.2377 {proposed recently}, that includes the non-linear dynamics of the chiral condensate. It is shown that for low momenta the result agrees with the relation proposed by arXiv:1010.0718 {Son and Yamamoto} motivated by a simpler holographic model. For large Euclidean momenta however, the two results diverge. In the process, the difference of the vector and axial vector two point functions is also calculated. At large Euclidean momenta it is found that the first non-perturbative contribution, decreases as q−6q^{-6} as expected from QCD.Comment: 17 pages, 5 figures, typos correcte

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    Sequence analysis of the Epstein-Barr virus (EBV) BRLF1 gene in nasopharyngeal and gastric carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr virus (EBV) has a biphasic infection cycle consisting of a latent and a lytic replicative phase. The product of immediate-early gene BRLF1, Rta, is able to disrupt the latency phase in epithelial cells and certain B-cell lines. The protein Rta is a frequent target of the EBV-induced cytotoxic T cell response. In spite of our good understanding of this protein, little is known for the gene polymorphism of BRLF1.</p> <p>Results</p> <p>BRLF1 gene was successfully amplified in 34 EBV-associated gastric carcinomas (EBVaGCs), 57 nasopharyngeal carcinomas (NPCs) and 28 throat washings (TWs) samples from healthy donors followed by PCR-direct sequencing. Fourteen loci were found to be affected by amino acid changes, 17 loci by silent nucleotide changes. According to the phylogenetic tree, 5 distinct subtypes of BRLF1 were identified, and 2 subtypes BR1-A and BR1-C were detected in 42.9% (51/119), 42.0% (50/119) of samples, respectively. The distribution of these 2 subtypes among 3 types of specimens was significantly different. The subtype BR1-A preferentially existed in healthy donors, while BR1-C was seen more in biopsies of NPC. A silent mutation A/G was detected in all the isolates. Among 3 functional domains, the dimerization domain of Rta showed a stably conserved sequence, while DNA binding and transactivation domains were detected to have multiple mutations. Three of 16 CTL epitopes, NAA, QKE and ERP, were affected by amino acid changes. Epitope ERP was relatively conserved; epitopes NAA and QKE harbored more mutations.</p> <p>Conclusions</p> <p>This first detailed investigation of sequence variations in BRLF1 gene has identified 5 distinct subtypes. Two subtypes BR1-A and BR1-C are the dominant genotypes of BRLF1. The subtype BR1-C is more frequent in NPCs, while BR1-A preferentially presents in healthy donors. BR1-C may be associated with the tumorigenesis of NPC.</p

    Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST

    Get PDF
    BACKGROUND: TBLASTN is a mode of operation for BLAST that aligns protein sequences to a nucleotide database translated in all six frames. We present the first description of the modern implementation of TBLASTN, focusing on new techniques that were used to implement composition-based statistics for translated nucleotide searches. Composition-based statistics use the composition of the sequences being aligned to generate more accurate E-values, which allows for a more accurate distinction between true and false matches. Until recently, composition-based statistics were available only for protein-protein searches. They are now available as a command line option for recent versions of TBLASTN and as an option for TBLASTN on the NCBI BLAST web server. RESULTS: We evaluate the statistical and retrieval accuracy of the E-values reported by a baseline version of TBLASTN and by two variants that use different types of composition-based statistics. To test the statistical accuracy of TBLASTN, we ran 1000 searches using scrambled proteins from the mouse genome and a database of human chromosomes. To test retrieval accuracy, we modernize and adapt to translated searches a test set previously used to evaluate the retrieval accuracy of protein-protein searches. We show that composition-based statistics greatly improve the statistical accuracy of TBLASTN, at a small cost to the retrieval accuracy. CONCLUSION: TBLASTN is widely used, as it is common to wish to compare proteins to chromosomes or to libraries of mRNAs. Composition-based statistics improve the statistical accuracy, and therefore the reliability, of TBLASTN results. The algorithms used by TBLASTN are not widely known, and some of the most important are reported here. The data used to test TBLASTN are available for download and may be useful in other studies of translated search algorithms

    Work-life conflict and musculoskeletal disorders: a cross-sectional study of an unexplored association

    Get PDF
    BACKGROUND: The health consequences of work-family or rather work-life conflict (WLC) have been studied by numerous researchers. The work-related causes of musculoskeletal disorders (MSD) are also well explored. And stress (at work) has been found to be a consequence of WLC as well as a cause of MSD. But very little is known about a potential association between WLC and MSD and the possible mediating role of stress in this relationship. METHODS: Survey data collected in 2007 among the workforces of four large companies in Switzerland were used for this study. The study population covered 6091 employees. As the exposure variable and hypothesized risk factor for MSD, WLC was measured by using a 10-item scale based on an established 18-item scale on work-family conflict. The outcome variables used as indicators of MSD were (low) back pain and neck/shoulder pain. Stress as the assumed intervening variable was assessed by a validated single-item measure of general stress perception. Correlation coefficients (r), standardized regression coefficients (beta) and multiple adjusted odds ratios (OR) were calculated as measures of association. RESULTS: WLC was found to be quite strongly associated with MSD (beta=.21). This association turned out to be substantially confounded by physical strain at work, workload and job autonomy and was considerably reduced but far from being completely eliminated after adjusting for general stress as another identified risk factor of MSD and a proven strong correlate of WLC (r=.44). A significant and relevant association still remained (beta=.10) after having controlled for all considered covariates. This association could be fully attributed to only one direction of WLC, namely the work-to-life conflict. In subsequent analyses, a clear gradient between this WLC direction and both types of MSD was found, and proved to be consistent for both men and women. Employees who were most exposed to such work-to-life conflict were also most at risk and showed a fivefold higher prevalence rate (19%-42%) and also an up to sixfold increased relative risk (OR=3.8-6.3) of suffering greatly from these types of MSD compared with the least exposed reference group showing very low WLC in this direction. Including stress in the regression models again reduced the strength of the association significantly (OR=1.9-4.1), giving an indication for a possible indirect effect of WLC on MSD mediated by stress. CONCLUSION: Future research and workplace interventions for the prevention of MSD need to consider WLC as an important stressor, and the MSD risk factor identified in this study

    Precision Electroweak Tests of the Standard Model

    Get PDF
    The present status of precision electroweak data is reviewed. These data include measurements of e+e- -> f+fbar, taken at the Z resonance at LEP, which are used to determine the mass and width of the Z boson. In addition, measurements have also been made of the forward-backward asymmetries for leptons and heavy quarks, and also the final state polarisation of the tau-lepton. At SLAC, where the electron beam was polarised, measurements were made of the left-right polarised asymmetry, A_LR, and the left-right forward-backward asymmetries for b and c quarks. The mass, MW, and width, GW, of the W boson have been measured at the Tevatron and at LEP, and the mass of the top quark, Mt, has been measured at the Tevatron. These data, plus other electroweak data, are used in global electroweak fits in which various Standard Model parameters are determined. A comparison is made between the results of the direct measurements of MW and Mt with the indirect results coming from electroweak radiative corrections. Using all precision electroweak data fits are also made to determine limits on the mass of the Higgs boson. The influence on these limits of specific measurements, particularly those which are somewhat inconsistent with the Standard Model, is explored. The data are also analysed in terms of the quasi model-independent epsilon variables. Finally, the impact on the electroweak fits of the improvements in the determination of the W-boson and top-quark masses, expected from the Tevatron Run 2, is examined.Comment: 80 pages, 36 Figures, Late

    Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails

    Get PDF
    Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins
    • …
    corecore