24,103 research outputs found

    Scanning Capacitance Spectroscopy on n\u3csup\u3e+\u3c/sup\u3e-p Asymmetrical Junctions in Multicrystalline Si Solar Cells

    Get PDF
    We report on a scanning capacitance spectroscopy (SCS) study on the n+-p junction of multicrystalline silicon solar cells. We found that the spectra taken at space intervals of ∼10 nm exhibit characteristic features that depend strongly on the location relative to the junction. The capacitance-voltage spectra exhibit a local minimum capacitance value at the electrical junction, which allows the junction to be identified with ∼10-nm resolution. The spectra also show complicated transitions from the junction to the n-region with two local capacitance minima on the capacitance-voltage curves; similar spectra to that have not been previously reported in the literature. These distinctive spectra are due to uneven carrier-flow from both the n- and p-sides. Our results contribute significantly to the SCS study on asymmetrical junctions

    Which Factors Can Contribute to the Success of Environmental and Animal Protection Projects in Donation-based Crowdfunding? A Neural Network Model

    Get PDF
    The crowdfunding industry has developed rapidly in recent years, the existing research shows that crowdfunding can help in many fields such as entrepreneurship, creative products, or donations. Due to global meteorological issues, more and more people are paying attention to the environment and animal protection. However, fundraising in these areas has been the biggest problem, the emergence of donation crowdfunding (DCF) can alleviate this dilemma. Currently, in academia, there is still less research focused on crowdfunding for environmental and animal protection. This paper aims to study the factors influencing the successful financing of environmental and animal protection projects in the DCF. This paper analyses 700 DCF environmental and animal protection projects in China as samples, and creatively introduces financial transparency scoring indicators. Through binary logistic regression, financial transparency was found to be the most critical positive factor affecting project success. At the same time, donors receive NPO-initiated projects well, and the number of donors can also positively impact the results. However, the excessive description of the projects can have the opposite effect. This study also introduced a neural network model, and found that the neural network model can optimize the discriminant accuracy of the traditional binary logistic regression model

    Mixing of spin and orbital angular momenta via second-harmonic generation in plasmonic and dielectric chiral nanostructures

    Get PDF
    We present a theoretical study of the characteristics of the nonlinear spin-orbital angular momentum coupling induced by second-harmonic generation in plasmonic and dielectric nanostructures made of centrosymmetric materials. In particular, the connection between the phase singularities and polarization helicities in the longitudinal components of the fundamental and second-harmonic optical fields and the scatterer symmetry properties are discussed. By in-depth comparison between the interaction of structured optical beams with plasmonic and dielectric nanostructures, we have found that all-dielectric and plasmonic nanostructures that exhibit magnetic and electric resonances have comparable second-harmonic conversion efficiency. In addition, mechanisms for second-harmonic enhancement for single and chiral clusters of scatterers are unveiled and the relationships between the content of optical angular momentum of the incident optical beams and the enhancement of nonlinear light scattering is discussed. In particular, we formulate a general angular momenta conservation law for the nonlinear spin-orbital angular momentum interaction, which includes the quasi-angular-momentum of chiral structures with different-order rotational symmetry. As a key conclusion of our study relevant to nanophotonics, we argue that all-dielectric nanostructures provide a more suitable platform to investigate experimentally the nonlinear interaction between spin and orbital angular momenta, as compared to plasmonic ones, chiefly due to their narrower resonance peaks, lower intrinsic losses, and higher sustainable optical power

    Vanadium(v) phenolate complexes for ring opening homo- and co-polymerisation of ε-caprolactone, L-lactide and rac-lactide

    Get PDF
    The vanadyl complexes [VO(OtBu)L¹ ] (1) and {[VO(OiPr)]₂ (μ-p-L²ᵖ)} (2) {[VO(OR)]₂ (μ-p-L²ᵐ )} (R = iPr 3, tBu 4) have been prepared from [VO(OR)₃ ] (R = nPr, iPr or tBu) and the respective phenol, namely 2,2′-ethylidenebis(4,6-di-tert-butylphenol) (L¹ H₂ ) or α,α,α′,α′-tetra(3,5-di-tert-butyl-2-hydroxyphenyl–p/m-)xylene-para-tetraphenol (L2p/mH₄). For comparative studies, the known complexes [VO(μ-OnPr)L¹]₂ (I), [VOL³ ]₂ (II) (L³H₃ = 2,6-bis(3,5-di-tert-butyl-2-hydroxybenzyl)-4-tert-butylphenol) were prepared. An imido complex {[VCl(Np-tolyl)(NCMe)]₂(μ-p-L²ᵖ)} (5) has been prepared following work-up from [V(Np-tolyl)Cl₃ ], L²ᵖH₄ and Et₃ N. The molecular structures of complexes 1–5 are reported. Complexes 1–5 and I and II have been screened for their ability to ring open polymerise ε-caprolactone, L-lactide or rac-lactide with and without solvent present. The co-polymerization of ε-caprolactone with L-lactide or rac-lactide afforded co-polymers with low lactide content; the reverse addition was ineffective

    The mRNA expression of SETD2 in human breast cancer: Correlation with clinico-athological parameters

    Get PDF
    BACKGROUND: SET domain containing protein 2 (SETD2) is a histone methyltransferase that is involved in transcriptional elongation. There is evidence that SETD2 interacts with p53 and selectively regulates its downstream genes. Therefore, it could be implicated in the process of carcinogenesis. Furthermore, this gene is located on the short arm of chromosome 3p and we previously demonstrated that the 3p21.31 region of chromosome 3 was associated with permanent growth arrest of breast cancer cells. This region includes closely related genes namely: MYL3, CCDC12, KIF9, KLHL18 and SETD2. Based on the biological function of these genes, SETD2 is the most likely gene to play a tumour suppressor role and explain our previous findings. Our objective was to determine, using quantitative PCR, whether the mRNA expression levels of SETD2 were consistent with a tumour suppressive function in breast cancer. This is the first study in the literature to examine the direct relationship between SETD2 and breast cancer. METHODS: A total of 153 samples were analysed. The levels of transcription of SETD2 were determined using quantitative PCR and normalized against (CK19). Transcript levels within breast cancer specimens were compared to normal background tissues and analyzed against conventional pathological parameters and clinical outcome over a 10 year follow-up period. RESULTS: The levels of SETD2 mRNA were significantly lower in malignant samples (p = 0.0345) and decreased with increasing tumour stage. SETD2 expression levels were significantly lower in samples from patients who developed metastasis, local recurrence, or died of breast cancer when compared to those who were disease free for > 10 years (p = 0.041). CONCLUSION: This study demonstrates a compelling trend for SETD2 transcription levels to be lower in cancerous tissues and in patients who developed progressive disease. These findings are consistent with a possible tumour suppressor function of this gene in breast cancer
    corecore