4 research outputs found

    GEOCHEMICAL CHARACTERISTICS OF GRANITOIDS ALONG THE WESTERN MARGIN OF THE CENTRAL ANATOLIAN CRYSTALLINE COMPLEX AND THEIR TECTONIC IMPLICATIONS

    No full text
    The closely related assemblage of igneous and metamorphic rocks that lie within a triangular area approximately bounded by the Tuzgolu Fault, the Ecemis Fault and the Izmir-Ankara-Erzincan Suture and between the lines connecting Ankara, Sivas and Nigde is called the Central Anatolian Crystalline Complex (CACC). The granitoids cropping out within the CACC can be divided areally into three groups: (1) a large number of individual small plutons which form an arcuate set and curve from NE-SW to NW-SE and extend from Sulakyurt to Nigde along the western margin; (2) a relatively narrow and smaller set of disconnected plutons extending from Sivas to Camardi along the eastern margin; and (3) a very large batholith along the northern margin exposed around Yozgat

    Crustal homogenization revealed by U–Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey)

    No full text
    Geochemical and isotopic evidence from the Agacoren Igneous Association in central Anatolia-Turkey indicates that this suite of calc-alkaline granitic rocks have undergone crustal homogenization during regional metamorphic and related magmatic events. Whole-rock chemical and Sr-Nd isotopic data of the granitoids reveal crustal affinity with an earlier subduction component. Zircons show inherited cores and subsequent magmatic overgrowths. The laser ablation ICP-MS Pb-206/U-238 zircon ages are determined as 84.1 +/- 1.0 Ma for the biotite-muscovite granite, 82.3 + 0.8/-1.1 Ma for the hornblende-biotite granite, 79.1 + 2.1/-1.5 Ma for the granite porphyry dyke, 75.0 + 1.0/-1.0 Ma for the alkali feldspar dyke, and 73.6 +/- 0.4 Ma for the monzonite. This is interpreted as continuous magma generation, possibly from heterogeneous sources, from ca. 84 to 74 Ma during the closure of the northern branch of the Neotethyan Ocean. The oldest granitoids (84-82 Ma) were probably formed due to crustal thickening after obduction of the MORB-type oceanic crust onto the Tauride-Anatolide microplate. The younger granitoids are interpreted to be related to the subsequent post-collisional extension after lithospheric delamination. Combination of the laser ablation ICP-MS zircon Lu-Hf isotope data with the U-Pb ages of inherited cores suggests that Cretaceous granitoids formed by melting of heterogeneous crustal protoliths, which results in significant variation in epsilon Hf-(t) data (from -12.9 to +2.2). These protoliths were probably composed of reworked Early Proterozoic crust, minor juvenile Late Proterozoic magmatic components, and Paleozoic to pre-Late Cretaceous recycled crustal material. Moreover, the Late Cretaceous zircon domains of the different granitoids are characterized by a crustal signature, with a relatively restricted zircon epsilon Hf-(t) data ranging from -4.1 to -8.8. This variation is only about twice the reproducibility (ca. +/- 1 epsilon Hf) of the data, bu
    corecore