136 research outputs found

    Uncertainty-principle noise in vacuum-tunneling transducers

    Full text link
    The fundamental sources of noise in a vacuum-tunneling probe used as an electromechanical transducer to monitor the location of a test mass are examined using a first-quantization formalism. We show that a tunneling transducer enforces the Heisenberg uncertainty principle for the position and momentum of a test mass monitored by the transducer through the presence of two sources of noise: the shot noise of the tunneling current and the momentum fluctuations transferred by the tunneling electrons to the test mass. We analyze a number of cases including symmetric and asymmetric rectangular potential barriers and a barrier in which there is a constant electric field. Practical configurations for reaching the quantum limit in measurements of the position of macroscopic bodies with such a class of transducers are studied

    Endothelial Dysfunction In Cardiovascular And Endocrine-metabolic Diseases: An Update.

    Get PDF
    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.44920-3

    Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Get PDF
    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations449920932CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    Identifying Critical Non-Catalytic Residues that Modulate Protein Kinase A Activity

    Get PDF
    Distal interactions between discrete elements of an enzyme are critical for communication and ultimately for regulation. However, identifying the components of such interactions has remained elusive due to the delicate nature of these contacts. Protein kinases are a prime example of an enzyme with multiple regulatory sites that are spatially separate, yet communicate extensively for tight regulation of activity. Kinase misregulation has been directly linked to a variety of cancers, underscoring the necessity for understanding intramolecular kinase regulation.A genetic screen was developed to identify suppressor mutations that restored catalytic activity in vivo from two kinase-dead Protein Kinase A mutants in S. cerevisiae. The residues defined by the suppressors provide new insights into kinase regulation. Many of the acquired mutations were distal to the nucleotide binding pocket, highlighting the relationship of spatially dispersed residues in regulation.The suppressor residues provide new insights into kinase regulation, including allosteric effects on catalytic elements and altered protein-protein interactions. The suppressor mutations identified in this study also share overlap with mutations identified from an identical screen in the yeast PKA homolog Tpk2, demonstrating functional conservation for some residues. Some mutations were independently isolated several times at the same sites. These sites are in agreement with sites previously identified from multiple cancer data sets as areas where acquired somatic mutations led to cancer progression and drug resistance. This method provides a valuable tool for identifying residues involved in kinase activity and for studying kinase misregulation in disease states

    Quantitative Analysis of Serum Procollagen Type I C-Terminal Propeptide by Immunoassay on Microchip

    Get PDF
    BACKGROUND: Sandwich enzyme-linked immunosorbent assay (ELISA) is one of the most frequently employed assays for clinical diagnosis, since this enables the investigator to identify specific protein biomarkers. However, the conventional assay using a 96-well microtitration plate is time- and sample-consuming, and therefore is not suitable for rapid diagnosis. To overcome these drawbacks, we performed a sandwich ELISA on a microchip. METHODS AND FINDINGS: The microchip was made of cyclic olefin copolymer with straight microchannels that were 300 µm wide and 100 µm deep. For the construction of a sandwich ELISA for procollagen type I C-peptide (PICP), a biomarker for bone formation, we used a piezoelectric inkjet printing system for the deposition and fixation of the 1st anti-PICP antibody on the surface of the microchannel. After the infusion of the mixture of 2.0 µl of peroxidase-labeled 2nd anti-PICP antibody and 0.4 µl of sample to the microchannel and a 30-min incubation, the substrate for peroxidase was infused into the microchannel; and the luminescence intensity of each spot of 1st antibody was measured by CCD camera. A linear relationship was observed between PICP concentration and luminescence intensity over the range of 0 to 600 ng/ml (r(2) = 0.991), and the detection limit was 4.7 ng/ml. Blood PICP concentrations of 6 subjects estimated from microchip were compared with results obtained by the conventional method. Good correlation was observed between methods according to simple linear regression analysis (R(2) = 0.9914). The within-day and between-days reproducibilities were 3.2-7.4 and 4.4-6.8%, respectively. This assay reduced the time for the antigen-antibody reaction to 1/6, and the consumption of samples and reagents to 1/50 compared with the conventional method. CONCLUSION: This assay enabled us to determine serum PICP with accuracy, high sensitivity, time saving ability, and low consumption of sample and reagents, and thus will be applicable to clinic diagnosis

    Local Oxidative and Nitrosative Stress Increases in the Microcirculation during Leukocytes-Endothelial Cell Interactions

    Get PDF
    Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O2•−) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O2•− and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O2•− and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O2•− and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ∼0.6 fold, O2•− increased ∼27 fold and peroxynitrite increased ∼30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O2•− and peroxynitrite concentration in the lumen. The increased O2•− and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O2•− in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events

    Advances in atomic force microscopy

    Get PDF
    This article reviews the progress of atomic force microscopy (AFM) in ultra-high vacuum, starting with its invention and covering most of the recent developments. Today, dynamic force microscopy allows to image surfaces of conductors \emph{and} insulators in vacuum with atomic resolution. The mostly used technique for atomic resolution AFM in vacuum is frequency modulation AFM (FM-AFM). This technique, as well as other dynamic AFM methods, are explained in detail in this article. In the last few years many groups have expanded the empirical knowledge and deepened the theoretical understanding of FM-AFM. Consequently, the spatial resolution and ease of use have been increased dramatically. Vacuum AFM opens up new classes of experiments, ranging from imaging of insulators with true atomic resolution to the measurement of forces between individual atoms.Comment: In press (Reviews of Modern Physics, scheduled for July 2003), 86 pages, 44 figure
    corecore