288 research outputs found

    A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence

    Get PDF
    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality

    Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair

    Get PDF
    Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing

    Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Get PDF
    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology

    Lipopolysaccharide-binding protein and future Parkinson's disease risk: a European prospective cohort

    Get PDF
    INTRODUCTION: Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson's disease (PD) in small-scale retrospective case-control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case-control study within a large European prospective cohort. METHODS: A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. RESULTS: Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98-2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09-2.18). CONCLUSION: The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals

    Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle fatigue reduces muscle strength and balance control in young people. It is not clear whether fatigue resistance seen in older persons leads to different effects. In order to understand whether muscle fatigue may increase fall risk in older persons, a systematic literature review aimed to summarize knowledge on the effects of lower extremity and trunk muscle fatigue on balance and functional tasks in older people was performed.</p> <p>Methods</p> <p>Studies were identified with searches of the PUBMED and SCOPUS data bases.</p> <p>Papers describing effects of lower extremity or trunk muscle fatigue protocols on balance or functional tasks in older people were included. Studies were compared with regards to study population characteristics, fatigue protocol, and balance and functional task outcomes.</p> <p>Results</p> <p>Seven out of 266 studies met the inclusion criteria. Primary findings were: fatigue via resistance exercises to lower limb and trunk muscles induces postural instability during quiet standing; induced hip, knee and ankle muscle fatigue impairs functional reach, reduces the speed and power of sit-to-stand repetitions, and produces less stable and more variable walking patterns; effects of age on degree of fatigue and rate of recovery from fatigue are inconsistent across studies, with these disparities likely due to differences in the fatigue protocols, study populations and outcome measures.</p> <p>Conclusion</p> <p>Taken together, the findings suggest that balance and functional task performance are impaired with fatigue. Future studies should assess whether fatigue is related to increased risk of falling and whether exercise interventions may decrease fatigue effects.</p

    Predictors of Occurrence and Severity of First Time Low Back Pain Episodes: Findings from a Military Inception Cohort

    Get PDF
    Primary prevention studies suggest that additional research on identifying risk factors predictive of low back pain (LBP) is necessary before additional interventions can be developed. In the current study we assembled a large military cohort that was initially free of LBP and followed over 2 years. The purposes of this study were to identify baseline variables from demographic, socioeconomic, general health, and psychological domains that were predictive of a) occurrence; b) time; and c) severity for first episode of self-reported LBP. Baseline and outcome measures were collected via web-based surveillance system or phone to capture monthly information over 2 years. The assembled cohort consisted of 1230 Soldiers who provided self-report data with 518 (42.1%) reporting at least one episode of LBP over 2 years. Multivariate logistic regression analysis indicated that gender, active duty status, mental and physical health scores were significant predictors of LBP. Cox regression revealed that the time to first episode of LBP was significantly shorter for Soldiers that were female, active duty, reported previous injury, and had increased BMI. Multivariate linear regression analysis investigated severity of the first episode by identifying baseline predictors of pain intensity, disability, and psychological distress. Education level and physical fitness were consistent predictors of pain intensity, while gender, smoking status, and previous injury status were predictors of disability. Gender, smoking status, physical health scores, and beliefs of back pain were consistent predictors of psychological distress. These results provide additional data to confirm the multi-factorial nature of LBP and suggest future preventative interventions focus on multi-modal approaches that target modifiable risk factors specific to the population of interest

    The effect of a sports chiropractic manual therapy intervention on the prevention of back pain, hamstring and lower limb injuries in semi-elite Australian Rules footballers: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hamstring injuries are the most common injury in Australian Rules football. It was the aims to investigate whether a sports chiropractic manual therapy intervention protocol provided in addition to the current best practice management could prevent the occurrence of and weeks missed due to hamstring and other lower-limb injuries at the semi-elite level of Australian football.</p> <p>Methods</p> <p>Sixty male subjects were assessed for eligibility with 59 meeting entry requirements and randomly allocated to an intervention (n = 29) or control group (n = 30), being matched for age and hamstring injury history. Twenty-eight intervention and 29 control group participants completed the trial. Both groups received the current best practice medical and sports science management, which acted as the control. Additionally, the intervention group received a sports chiropractic intervention. Treatment for the intervention group was individually determined and could involve manipulation/mobilization and/or soft tissue therapies to the spine and extremity. Minimum scheduling was: 1 treatment per week for 6 weeks, 1 treatment per fortnight for 3 months, 1 treatment per month for the remainder of the season (3 months). The main outcome measure was an injury surveillance with a missed match injury definition.</p> <p>Results</p> <p>After 24 matches there was no statistical significant difference between the groups for the incidence of hamstring injury (OR:0.116, 95% CI:0.013-1.019, p = 0.051) and primary non-contact knee injury (OR:0.116, 95% CI:0.013-1.019, p = 0.051). The difference for primary lower-limb muscle strains was significant (OR:0.097, 95%CI:0.011-0.839, p = 0.025). There was no significant difference for weeks missed due to hamstring injury (4 v14, χ2:1.12, p = 0.29) and lower-limb muscle strains (4 v 21, χ2:2.66, p = 0.10). A significant difference in weeks missed due to non-contact knee injury was noted (1 v 24, χ2:6.70, p = 0.01).</p> <p>Conclusions</p> <p>This study demonstrated a trend towards lower limb injury prevention with a significant reduction in primary lower limb muscle strains and weeks missed due to non-contact knee injuries through the addition of a sports chiropractic intervention to the current best practice management.</p> <p>Trial registration</p> <p>The study was registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12608000533392).</p

    Dysferlin Forms a Dimer Mediated by the C2 Domains and the Transmembrane Domain In Vitro and in Living Cells

    Get PDF
    Dysferlin was previously identified as a key player in muscle membrane repair and its deficiency leads to the development of muscular dystrophy and cardiomyopathy. However, little is known about the oligomerization of this protein in the plasma membrane. Here we report for the first time that dysferlin forms a dimer in vitro and in living adult skeletal muscle fibers isolated from mice. Endogenous dysferlin from rabbit skeletal muscle exists primarily as a ∼460 kDa species in detergent-solubilized muscle homogenate, as shown by sucrose gradient fractionation, gel filtration and cross-linking assays. Fluorescent protein (YFP) labeled human dysferlin forms a dimer in vitro, as demonstrated by fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analyses. Dysferlin also dimerizes in living cells, as probed by fluorescence resonance energy transfer (FRET). Domain mapping FRET experiments showed that dysferlin dimerization is mediated by its transmembrane domain and by multiple C2 domains. However, C2A did not significantly contribute to dimerization; notably, this is the only C2 domain in dysferlin known to engage in a Ca-dependent interaction with cell membranes. Taken together, the data suggest that Ca-insensitive C2 domains mediate high affinity self-association of dysferlin in a parallel homodimer, leaving the Ca-sensitive C2A domain free to interact with membranes
    corecore