9 research outputs found

    Seasonal shedding of coronavirus by straw-colored fruit bats at urban roosts in Africa.

    No full text
    The straw-colored fruit bat (Eidolon helvum) is a pteropodid whose conservation is crucial for maintaining functional connectivity of plant populations in tropical Africa. Land conversion has pushed this species to adapt to roosting in urban centers across its range. These colonies often host millions of individuals, creating intensive human-bat contact interfaces that could facilitate the spillover of coronaviruses shed by these bats. A better understanding of coronavirus dynamics in these roosts is needed to identify peak times of exposure risk in order to propose evidence-based management that supports safe human-bat coexistence, as well as the conservation of this chiropteran. We studied the temporal patterns of coronavirus shedding in E. helvum, by testing thousands of longitudinally-collected fecal samples from two spatially distant urban roosts in Ghana and Tanzania. Shedding of coronaviruses peaked during the second part of pup weaning in both roosts. Assuming that coronavirus shedding is directly related to spillover risk, our results indicate that exposure mitigation should target reducing contact between people and E. helvum roosts during the pup "weaning" period. This recommendation can be applied across the many highly-populated urban sites occupied by E. helvum across Africa

    Surveillance for potentially zoonotic viruses in rodent and bat populations and behavioral risk in an agricultural settlement in Ghana.

    No full text
    BackgroundIn Ghana, the conversion of land to agriculture, especially across the vegetative belt has resulted in fragmented forest landscapes with increased interactions among humans, domestic animals, and wildlife.MethodsWe investigated viruses in bats and rodents, key reservoir hosts for zoonotic viral pathogens, in a small agricultural community in the vegetation belt of Ghana. We also administered questionnaires among the local community members to learn more about people's awareness and perceptions of zoonotic disease risks and the environmental factors and types of activities in which they engage that might influence pathogen transmission from wildlife.ResultsOur study detected the RNA from paramyxoviruses and coronaviruses in rodents and bats, including sequences from novel viruses with unknown zoonotic potential. Samples collected from Epomophorus gambianus bats were significantly more likely to be positive for coronavirus RNA during the rainy season, when higher numbers of young susceptible individuals are present in the population. Almost all community members who responded to the questionnaire reported contact with wildlife, especially bats, rodents, and non-human primates in and around their homes and in the agricultural fields. Over half of the respondents were not aware or did not perceive any zoonotic disease risks associated with close contact with animals, such as harvesting and processing animals for food. To address gaps in awareness and mitigation strategies for pathogen transmission risks, we organized community education campaigns using risk reduction and outreach tools focused around living safely with bats and rodents.ConclusionsThese findings expand our knowledge of the viruses circulating in bats and rodents in Ghana and of the beliefs, perceptions, and practices that put community members at risk of zoonotic virus spillover through direct and indirect contact with bats and rodents. This study also highlights the importance of community engagement in research and interventions focused on mitigating risk and living safely with wildlife

    Spine Day 2012: spinal pain in Swiss school children- epidemiology and risk factors

    Get PDF
    BACKGROUND: The key to a better understanding of the immense problem of spinal pain seems to be to investigate its development in adolescents. Based on the data of Spine Day 2012 (an annual action day where Swiss school children were examined by chiropractors on a voluntary basis for back problems), the aim of the present study was to gain systematic epidemiologic data on adolescent spinal pain in Switzerland and to explore risk factors per gender and per spinal area. METHOD: Data (questionnaires and physical examinations) of 836 school children were descriptively analyzed for prevalence, recurrence and severity of spinal pain. Of those, 434 data sets were included in risk factor analysis. Using logistic regression analysis, psycho-social parameters (presence of parental back pain, parental smoking, media consumption, type of school bag) and physical parameters (trunk symmetry, posture, mobility, coordination, BMI) were analyzed per gender and per spinal area. RESULTS: Prevalence of spinal pain was higher for female gender in all areas apart from the neck. With age, a steep increase in prevalence was observed for low back pain (LBP) and for multiple pain sites. The increasing impact of spinal pain on quality of life with age was reflected in an increase in recurrence, but not in severity of spinal pain. Besides age and gender, parental back pain (Odds ratio (OR)=3.26, p=0.011) and trunk asymmetry (OR=3.36, p=0.027) emerged as risk factors for spinal pain in girls. Parental smoking seemed to increase the risk for both genders (boys: OR=2.39, p=0.020; girls: OR=2.19, p=0.051). Risk factor analysis per spinal area resulted in trunk asymmetry as risk factor for LBP (OR=3.15, p=0.015), while parental smoking increased the risk for thoracic spinal pain (TSP) (OR=2.83, p=0.036) and neck pain (OR=2.23, p=0.038). The risk for TSP was further enhanced by a higher BMI (OR=1.15, p=0.027). CONCLUSION: This study supports the view of adolescent spinal pain as a bio-psycho-social problem that should be investigated per spinal area, age and gender. The role of trunk asymmetry and passive smoking as risk factors as well as the association between BMI and TSP should be further investigated, preferably in prospective studies

    Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013-2014.

    No full text
    Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were also detected in rodents on the majority of wildlife farms sampled (60.7%, 17/28). These coronaviruses were found in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are raised on wildlife farms for human consumption as food. We identified six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and avian coronaviruses were detected in rodent feces on wildlife farms. The mixing of multiple coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic spillover to people
    corecore