66 research outputs found
Addressing quality and usability of surface water bodies in semi-arid regions with mining influences
Water resources management has considerable importance, specifically in the context of climate change. This subject has introduced new challenges in semi-arid regions with water quality problems, such as the Iberian Pyrite Belt, which is one of the largest metallogenetic provinces in the world and one of the driest regions in Europe. Positioned in the Mediterranean context, the region has a high density of polymetallic sulphide mines that promote the degradation of water systems. The present study aims to assess the water quality in the Pyrite Belt, considering a total of 34 surface water bodies, including constructed reservoirs, permanent and ephemeral streams, and mining facilities with accumulated water (e.g., pit lakes and mining dams). The water samples were analysed for physico-chemical properties, including field parameters (pH, electrical conductivity), alkalinity/acidity, hardness, anions, and potential toxic elements. The results were used for hydrochemical classifications and the assessment of suitability for public uses. Statistical methods, such as hierarchical cluster analysis and nearest centroid classifier, were used for grouping and evaluating the similarity between water bodies. Two groups were generated from the analysis: i) constructed lakes with alkaline and sodium signatures; and ii) waters suffering from the influence of mining wastes, e.g., showing high acidity, sulphate and metal contents. Therefore, the loss of water quality in the vicinity of mines reflects the impact of acid mine drainage. The methodological approach used may be applied to the integrated management of water resources in regions with mining influences and where it is necessary to combat drought and water scarcity scenarios.Patricia Gomes acknowledge FCT (Science and Technology Foundation, Portugal) by the research fellowship under the POCH (Programa Operacional Capital Humano) supported by the European Social Fund and National Funds of MCTES (Ministerio da Ciencia, Tecnologia e Ensino Superior) with reference SFRH/BD/108887/2015. This work was co-funded by the European Union through the European Regional Development Fund, based on COMPETE 2020 (Programa Operacional da Competitividade e Internacionalizacao) - project ICT (UID/GEO/04683/2013) with reference POCI-01-0145-FEDER-007690 and project Nano-MINENV number 029259
Analysis of Antibody and Cytokine Markers for Leprosy Nerve Damage and Reactions in the INFIR Cohort in India
Leprosy is one of the oldest known diseases. In spite of the established fact that it is least infectious and a completely curable disease, the social stigma associated with it still lingers in many countries and remains a major obstacle to self reporting and early treatment. The nerve damage that occurs in leprosy is the most serious aspect of this disease as nerve damage leads to progressive impairment and disability. It is important to identify markers of nerve damage so that preventive measures can be taken. This prospective cohort study was designed to look at the potential association of some serological markers with reactions and nerve function impairment. Three hundred and three newly diagnosed patients from north India were recruited for this study. The study attempts to reflect a model of nerve damage initiated by mycobacterial antigens and maintained by ongoing inflammation through cytokines such as Tumour Necrosis Factor alpha and perhaps extended by antibodies against nerve components
Recommended from our members
Global, regional, and national age-specific progress towards the 2020 milestones of the WHO End TB Strategy: a systematic analysis for the Global Burden of Disease Study 2021
Background
Global evaluations of the progress towards the WHO End TB Strategy 2020 interim milestones on mortality (35% reduction) and incidence (20% reduction) have not been age specific. We aimed to assess global, regional, and national-level burdens of and trends in tuberculosis and its risk factors across five separate age groups, from 1990 to 2021, and to report on age-specific progress between 2015 and 2020.
Methods
We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 (GBD 2021) analytical framework to compute age-specific tuberculosis mortality and incidence estimates for 204 countries and territories (1990–2021 inclusive). We quantified tuberculosis mortality among individuals without HIV co-infection using 22 603 site-years of vital registration data, 1718 site-years of verbal autopsy data, 825 site-years of sample-based vital registration data, 680 site-years of mortality surveillance data, and 9 site-years of minimally invasive tissue sample (MITS) diagnoses data as inputs into the Cause of Death Ensemble modelling platform. Age-specific HIV and tuberculosis deaths were established with a population attributable fraction approach. We analysed all available population-based data sources, including prevalence surveys, annual case notifications, tuberculin surveys, and tuberculosis mortality, in DisMod-MR 2.1 to produce internally consistent age-specific estimates of tuberculosis incidence, prevalence, and mortality. We also estimated age-specific tuberculosis mortality without HIV co-infection that is attributable to the independent and combined effects of three risk factors (smoking, alcohol use, and diabetes). As a secondary analysis, we examined the potential impact of the COVID-19 pandemic on tuberculosis mortality without HIV co-infection by comparing expected tuberculosis deaths, modelled with trends in tuberculosis deaths from 2015 to 2019 in vital registration data, with observed tuberculosis deaths in 2020 and 2021 for countries with available cause-specific mortality data.
Findings
We estimated 9·40 million (95% uncertainty interval [UI] 8·36 to 10·5) tuberculosis incident cases and 1·35 million (1·23 to 1·52) deaths due to tuberculosis in 2021. At the global level, the all-age tuberculosis incidence rate declined by 6·26% (5·27 to 7·25) between 2015 and 2020 (the WHO End TB strategy evaluation period). 15 of 204 countries achieved a 20% decrease in all-age tuberculosis incidence between 2015 and 2020, eight of which were in western sub-Saharan Africa. When stratified by age, global tuberculosis incidence rates decreased by 16·5% (14·8 to 18·4) in children younger than 5 years, 16·2% (14·2 to 17·9) in those aged 5–14 years, 6·29% (5·05 to 7·70) in those aged 15–49 years, 5·72% (4·02 to 7·39) in those aged 50–69 years, and 8·48% (6·74 to 10·4) in those aged 70 years and older, from 2015 to 2020. Global tuberculosis deaths decreased by 11·9% (5·77 to 17·0) from 2015 to 2020. 17 countries attained a 35% reduction in deaths due to tuberculosis between 2015 and 2020, most of which were in eastern Europe (six countries) and central Europe (four countries). There was variable progress by age: a 35·3% (26·7 to 41·7) decrease in tuberculosis deaths in children younger than 5 years, a 29·5% (25·5 to 34·1) decrease in those aged 5–14 years, a 15·2% (10·0 to 20·2) decrease in those aged 15–49 years, a 7·97% (0·472 to 14·1) decrease in those aged 50–69 years, and a 3·29% (–5·56 to 9·07) decrease in those aged 70 years and older. Removing the combined effects of the three attributable risk factors would have reduced the number of all-age tuberculosis deaths from 1·39 million (1·28 to 1·54) to 1·00 million (0·703 to 1·23) in 2020, representing a 36·5% (21·5 to 54·8) reduction in tuberculosis deaths compared to those observed in 2015. 41 countries were included in our analysis of the impact of the COVID-19 pandemic on tuberculosis deaths without HIV co-infection in 2020, and 20 countries were included in the analysis for 2021. In 2020, 50 900 (95% CI 49 700 to 52 400) deaths were expected across all ages, compared to an observed 45 500 deaths, corresponding to 5340 (4070 to 6920) fewer deaths; in 2021, 39 600 (38 300 to 41 100) deaths were expected across all ages compared to an observed 39 000 deaths, corresponding to 657 (–713 to 2180) fewer deaths.
Interpretation
Despite accelerated progress in reducing the global burden of tuberculosis in the past decade, the world did not attain the first interim milestones of the WHO End TB Strategy in 2020. The pace of decline has been unequal with respect to age, with older adults (ie, those aged >50 years) having the slowest progress. As countries refine their national tuberculosis programmes and recalibrate for achieving the 2035 targets, they could consider learning from the strategies of countries that achieved the 2020 milestones, as well as consider targeted interventions to improve outcomes in older age groups
Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020
Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation
Not Available
Not AvailableAbstract:
The study reported Thryssa stenosoma, as a new host of isopod Nerocila depressa infestation. Furthermore, the record of Nerocila depressa from the Narmada estuary is of first kind in the West Coast of India. Thryssa stenosoma, commonly known as slender thryssa forms an important commercial fish species at Bhadbhut, a part of the Narmada estuary. The prevalence of N. depressa infestation was 17.39% with a mean intensity of 2.8. in T. stenosoma, showing a low rate of infestation. The present information would form a new addition of isopod infestation to the list of parasitic diseases of estuarine fishes in India.Not Availabl
Recommended from our members
Modelling soil water balance and root water uptake in cotton grown under different soil conservation practices in the Indo-Gangetic Plain
Although soil conservation practices are being promoted as better environmental protection technologies than traditional farmers’ practice, limited information is available on how these practices affect soil water balance and root water uptake. The root water uptake (RWU) patterns of cotton grown under soil conservation practices and soil water balance in cotton (Gossypium hirsutum L.) fieldsunder a cotton-wheat (Triticum aestivum L.) cropping system were analyzed using the Hydrus-2D model. The treatments were: conventional tillage (CT), zero tillage (ZT), permanent narrow beds (PNB), permanent broad beds (PBB), ZT with residue (ZT + R), PNB with residue (PNB + R) and PBB with residue (PBB + R). Results in the third year of the cotton crop indicated that the surface (0–15 cm layer) field saturated hydraulic conductivity in both PNB and PBB plots were similar and were significantly higher than in the ZT plots. Computed potential transpiration rates (Trp) under CT were lower than in other treatments, due to less radiation interception and lower Leaf Area Index (LAI). Both PNB and PBB plots had higher Trp and crop yields than CT plots, which were further improved by residue retention. Predicted soil water content (SWC) patterns during the simulation periods of third and fourth years showed strong correlation (R2 = 0.88, n = 105, P < 0.001, the root mean square error (RMSE) = 0.025, and the average relative error (AVE) = 7.5% for the third year and R2 = 0.81, n = 105, P < 0.001, RMSE = 0.021, and AVE = 9% for the fourth year) with the actual field measured SWCs. Cumulative RWU (mm) were in the order: ZT (143) < CT (157) < PNB (163) < ZT + R (174) < PBB (188) < PNB + R (198) < PBB + R (226). Thus, PBB + R and PNB + R practices could be adopted for cotton cultivation, as these enhanced root growth and improved radiation interception and LAI. The Hydrus-2D model may be adopted for managing efficient water use, as it can simulate the temporal changes in SWC and actual transpiration rates of a crop/cropping system
Not Available
Not AvailableBackground
In this study, whole genome re-sequencing of rust resistant soybean genotype EC241780 was performed to understand the genomic landscape involved in the resistance mechanism.
Methods
A total of 374 million raw reads were obtained with paired-end sequencing performed with Illumina HiSeq 2500 instrument, out of which 287.3 million high quality reads were mapped to Williams 82 reference genome. Comparative sequence analysis of EC241780 with rust susceptible cultivars Williams 82 and JS 335 was performed to identify sequence variation and to prioritise the candidate genes.
Results
Comparative analysis indicates that genotype EC241780 has high sequence similarity with rust resistant genotype PI 200492 and the resistance in EC241780 is conferred by the Rpp1 locus. Based on the sequence variations and functional annotations, three genes Glyma18G51715, Glyma18G51741 and Glyma18G51765 encoding for NBS-LRR family protein were identified as the most prominent candidate for Rpp1 locus.
Conclusion
The study provides insights of genome-wide sequence variation more particularly at Rpp1 loci which will help to develop rust resistant soybean cultivars through efficient exploration of the genomic resource.Not Availabl
Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal
The high-salinity water masses that originate in the North Indian Ocean are Arabian Sea High-Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW). Among them, only ASHSW has been shown to exist in the Bay of Bengal. We use CTD data from recent cruises to show that PGW and RSW also exist in the bay. The presence of RSW is marked by a deviation of the salinity vertical profile from a fitted curve at depths ranging from 500 to 1000 m; this deviation, though small (of the order of similar to 0.005 psu and therefore comparable to the CTD accuracy of 0.003 psu), is an order of magnitude larger than the similar to 0.0003 psu fluctuations associated with the background turbulence or instrument noise in this depth regime, allowing us to infer the existence of RSW throughout the bay. PGW is marked by the presence of a salinity maximum at 200-450 m; in the southwestern bay, PGW can be distinguished from the salinity maximum due to ASHSW because of the intervening Arabian Sea Salinity Minimum. This salinity minimum and the maximum associated with ASHSW disappear east and north of the south-central bay (85A degrees E, 8A degrees N) owing to mixing between the fresher surface waters that are native to the bay (Bay of Bengal Water or BBW) with the high-salinity ASHSW. Hence, ASHSW is not seen as a distinct water mass in the northern and eastern bay and the maximum salinity over most of the bay is associated with PGW. The surface water over most of the bay is therefore a mixture of ASHSW and the low-salinity BBW. As a corollary, we can also infer that the weak oxygen peak seen within the oxygen-minimum zone in the bay at a depth of 250-400 m is associated with PGW. The hydrographic data also show that these three high-salinity water masses are advected into the bay by the Summer Monsoon Current, which is seen to be a deep current extending to 1000 m. These deep currents extend into the northern bay as well, providing a mechanism for spreading ASHSW, PGW, and RSW throughout the bay
- …