25 research outputs found

    Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery

    Get PDF
    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO-), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.published_or_final_versio

    Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+

    No full text
    During reperfusion, the interplay between excess reactive oxygen species (ROS) production, mitochondrial Ca2+ overload, and mitochondrial permeability transition pore (mPTP) opening, as the crucial mechanism of cardiomyocyte injury, remains intriguing. Here, we investigated whether an induction of a partial decrease in mitochondrial membrane potential (ΔΨm) is an underlying mechanism of protection by anesthetic-induced preconditioning (APC) with isoflurane, specifically addressing the interplay between ROS, Ca2+, and mPTP opening. The magnitude of APC-induced decrease in ΔΨm was mimicked with the protonophore 2,4-dinitrophenol (DNP), and the addition of pyruvate was used to reverse APC- and DNP-induced decrease in ΔΨm. In cardiomyocytes, ΔΨm, ROS, mPTP opening, and cytosolic and mitochondrial Ca2+ were measured using confocal microscope, and cardiomyocyte survival was assessed by Trypan blue exclusion. In isolated cardiac mitochondria, antimycin A-induced ROS production and Ca2+ uptake were determined spectrofluorometrically. In cells exposed to oxidative stress, APC and DNP increased cell survival, delayed mPTP opening, and attenuated ROS production, which was reversed by mitochondrial repolarization with pyruvate. In isolated mitochondria, depolarization by APC and DNP attenuated ROS production, but not Ca2+ uptake. However, in stressed cardiomyocytes, a similar decrease in ΔΨm attenuated both cytosolic and mitochondrial Ca2+ accumulation. In conclusion, a partial decrease in ΔΨm underlies cardioprotective effects of APC by attenuating excess ROS production, resulting in a delay in mPTP opening and an increase in cell survival. Such decrease in ΔΨm primarily attenuates mitochondrial ROS production, with consequential decrease in mitochondrial Ca2+ uptake
    corecore