9 research outputs found

    Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration

    Get PDF
    The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m2; VO2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO2max. Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake – expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period

    Effect of Exercise on Secretory IgA and Lactoferrin Concentrations in Human Milk

    No full text

    The influence of hydration status during prolonged endurance exercise on salivary antimicrobial proteins

    No full text
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00421-015-3173-1Purpose: Antimicrobial proteins (AMPs) in saliva including secretory immunoglobulin A (SIgA), lactoferrin (SLac) and lysozyme (SLys) are important in host defence against oral and respiratory infections. This study investigated the effects of hydration status on saliva AMP responses to endurance exercise. Methods: Using a randomized design, 10 healthy male participants (age 23 ± 4 years, (Formula presented.) 56.8 ± 6.5 ml/kg/min) completed 2 h cycling at 60 % (Formula presented.) in states of euhydration (EH) or dehydration (DH) induced by 24 h fluid restriction. Unstimulated saliva samples were collected before, during, immediately post-exercise and each hour for 3 h recovery. Results: Fluid restriction resulted in a 1.5 ± 0.5 % loss of body mass from baseline and a 4.3 ± 0.7 % loss immediately post-exercise. Pre-exercise urine osmolality was higher in DH than EH and overall, saliva flow rate was reduced in DH compared with EH (p < 0.05). Baseline SIgA secretion rates were not different between conditions; however, exercise induced a significant increase in SIgA concentration in DH (161 ± 134 to 309 ± 271 mg/L) which remained elevated throughout 3 h recovery. SLac secretion rates increased from pre- to post-exercise in both conditions which remained elevated in DH only. Overall, SLac concentrations were higher in DH than EH. Pre-exercise SLys concentrations were lower in DH compared with EH (1.6 ± 2.0 vs. 5.5 ± 6.7 mg/L). Post-exercise SLys concentrations remained elevated in DH but returned to pre-exercise levels by 1 h post-exercise in EH. Conclusions: Exercise in DH caused a reduction in saliva flow rate yet induced greater secretion rates of SLac and higher concentrations of SIgA and SLys. Thus, DH does not impair saliva AMP responses to endurance exercise
    corecore