17 research outputs found

    Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles

    Get PDF
    This article describes a bioelectrode for the determination of human cardiac troponin-I (cTnI). A glassy carbon electrode was coated with a hybrid film of graphene and multiwalled carbon nanotube (G-MWCNT) and modified with platinum nanoparticles (Pt NPs) that were capped with mercaptopropionic acid. The PtNPs were anchored on the G-MWCNT hybrid film via the cross-linker 1-pyrenemethylamine and subsequently functionalized with antibody against troponin (anti-cTnI). The bioelectrode was characterized by transmission electron microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The performance of the immunoelectrode was investigated by electrochemical impedance spectroscopy, and response was fit to Randle's equivalent circuit model. The charge transfer resistance (R-et) at a.c. frequencies of < 1 Hz is found to be a viable sensing parameter. The dissociation constant of the immunoreaction between surface immobilized anti-cTnI and the analyte cTnI is 0.29 nM (with a Hill coefficient of 0.23), this indicating a negative cooperativity and high binding affinity of cTnI for anti-cTnI on the electrode surface. The EIS response is linear in the 1.0 pg mL(-1) to 10 ng mL(-1) concentration range, and the R-et sensitivity is 145.5 a"broken vertical bar cm(2) per decade

    Electrochemical Impedance Analysis of Biofunctionalized Conducting Polymer-Modified Graphene-CNTs Nanocomposite for Protein Detection

    Get PDF
    We report an electrodeposited poly(pyrrole-co-pyrrolepropylic acid) copolymer modified electroactive graphene-carbon nanotubes composite deposited on a glassy carbon electrode to detect the protein antigen (cTnI). The copolymer provides pendant carboxyl groups for the site-specific covalent immobilization of protein antibody, anti-troponin I. The hybrid nanocomposite was used as a transducer for biointerfacial impedance sensing for cTnI detection. The results show that the hybrid exhibits a pseudo capacitive behaviour with a maximum phase angle of 49 degrees near 1 Hz, which is due to the inhomogeneous and porous structure of the hybrid composition. The constant phase element of copolymer is 0.61 (n = 0.61), whereas, it is 0.88 (n = 0.88) for the hybrid composites, indicating a comparatively homogeneous microstructure after biomolecular functionalization. The transducer shows a linear change in charge transfer characteristic (R-et) on cTnI immunoreaction for spiked human serum in the concentration range of 1.0 pg mL(-1) - 10.0 ng mL(-1). The sensitivity of the transducer is 167.8 +/- 14.2 Omega cm(2) per decade, and it also exhibits high specificity and good reproducibility

    Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography

    No full text
    Capillary-driven flow (CD-flow) in microchannels plays an important role in many microfluidic devices. These devices, the most popular being those based in lateral flow, are becoming increasingly used in health care and diagnostic applications. CD-flow can passively pump biological fluids as blood, serum or plasma, in microchannels and it can enhance the wall mass transfer by exploiting the convective effects of the flow behind the meniscus. The flow behind the meniscus has not been experimentally identified up to now because of the lack of high-resolution, non-invasive, cross-sectional imaging means. In this study, spectral-domain Doppler optical coherence tomography is used to visualize and measure the flow behind the meniscus in CD-flows of water and blood. Microchannels of polydimethylsiloxane and glass with different cross-sections are considered. The predictions of the flow behind the meniscus of numerical simulations using the power-law model for non-Newtonian fluids are in reasonable agreement with the measurements using blood as working fluid. The extension of the Lucas-Washburn equation to non-Newtonian power-law fluids predicts well the velocity of the meniscus of the experiments using blood.close3
    corecore