5 research outputs found

    Changes on Schistosoma mansoni (Digenea: Schistosomatidae) worm load in Nectomys squamipes (Rodentia: Sigmodontinae) concurrently infected with Echinostoma paraensei (Digenea: Echinostomatidae)

    No full text
    The water rat, Nectomys squamipes, closely involved in schistosomiasis transmission in Brazil, has been found naturally infected simultaneously by Schistosoma mansoni and Echinostoma paraensei. Laboratory experiments were conducted to verify parasitic interaction in concurrent infection. It was replicated four times with a total of 42 water rats and essayed two times with 90 mice pre-infected with E. paraensei. Rodents were divided into three groups in each replication. A wild strain recently isolated from Sumidouro, RJ, and a laboratory strain of S. mansoni from Belo Horizonte (BH) was used. Rats infected with E. paraensei were challenged 4 weeks later with S. mansoni and mice 2 or 6 weeks after the infection with S. mansoni. Necropsy took place 8 weeks following S. mansoni infection. The N. squamipes treatment groups challenged with S. mansoni RJ strain showed a significant decrease (80 and 65%) in the S. mansoni parasite load when compared with their respective control groups. There was a significant change or no change in the hosts challenged with the BH strain. The persistence time of E. paraensei within host was extended in relation to control groups, with a consequent enhancement of the number of recovered worm. An E. paraensei strain-specific influence on S. mansoni parasitism is reported. This paper presents some experimental data about this interaction in N. squamipes and Mus musculus

    Ectopic mineralized cartilage formation in human undifferentiated pancreatic adenocarcinoma explants grown in nude mice

    No full text
    Mineralized as well as nonmineralized cartilage-like structures enclosing cells resembling chondrocytes were found in human-derived undifferentiated but not in poorly differentiated pancreatic adenocarcinoma explants grown in nude mice. The structures reacted with anti-mouse IgG but not with antibodies against human cytokeratin 19, indicating that the newly formed tissue was of mouse origin. High activity of alkaline phosphatase was found in cell layers surrounding the structures and in cells embedded in the matrix. The extracellular matrix was strongly positive after Sirius red staining, reacted with anti-collagen type II antibodies, and the presence of proteoglycans was demonstrated with Alcian blue staining and by metachromasia after Giemsa staining. Electron microscopic inspection revealed the presence of bundles of both thick collagenous fibrils with low levels of fine filamentous material and thin collagenous fibrils with high concentrations of filamentous components. The majority of both types of matrices was found to be partially or completely calcified. The mean area density of the cartilage-like structures in the undifferentiated tumors was 0.31%. The frequent formation of the cartilage-like structures in the rapidly growing undifferentiated explants and its absence in the slowly growing, more differentiated explants suggest that low oxygen tensions in combination with altered levels of growth factors, such as members of the transforming growth factor beta superfamily, create conditions that induce differentiation of fibroblasts to chondrocytes. It is concluded that these human tumors grown in nude mice can be used as an in vivo model to study ectopic formation of mineralized cartilag
    corecore