5,960 research outputs found

    Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes

    Full text link
    Cryptographic primitives are essential for constructing privacy-preserving communication mechanisms. There are situations in which two parties that do not know each other need to exchange sensitive information on the Internet. Trust management mechanisms make use of digital credentials and certificates in order to establish trust among these strangers. We address the problem of choosing which credentials are exchanged. During this process, each party should learn no information about the preferences of the other party other than strictly required for trust establishment. We present a method to reach an agreement on the credentials to be exchanged that preserves the privacy of the parties. Our method is based on secure two-party computation protocols for set intersection. Namely, it is constructed from private matching schemes.Comment: The material in this paper will be presented in part at the 8th DPM International Workshop on Data Privacy Management (DPM 2013

    Minéralogie de la fraction argileuse des sols brunifiés de Kahankro et Anikro (Toumodi) dans le Centre Sud de la Côte d’Ivoire

    Get PDF
    Dans la perspective d’élucider les occurrences minéralogiques des sols brunifiés de Kahankro et de Anikro (Toumodi), dans la région centre de la Côte d’Ivoire, nous nous sommes intéressés à la fraction argileuse des sols. Cette étude, dans sa phase technique, a consisté à extraire la fraction argileuse des échantillons de sol prélevés sur le terrain en s’appuyant sur la méthode de Hotzapfel. Ces échantillons, de même que ceux du sol total, ont été ensuite soumis à une analyse aux rayons X sur lame orientée séchée à l’air puis, à des analyses thermodifférentielles et thermopondérales à une température allant jusqu’à 1200 °C. Les résultats obtenus au bout de cette étude indiquent que les sols brunifiés de Kahankro et de Anikro contiennent différents types de minéraux existant en des proportions aussi variées. Il s’agit des oxydes (quartz, hématite,ilménite et boéhmite) avec une proportion généralement supérieure à 39%, des minéraux primaires (feldspaths, olivine, dolomite et calcite) ayant une proportion supérieure à 30% et des minéraux argileux (kaolinite, illite et chlorite) qui existent en une proportion généralement inférieure à 25%. Le phénomène d’argilation qui prévaut dans ces sols est la monosiallitisation, vu la prédominance de minéraux argileux de type 1/1 (kaolinite) sur les autres minéraux argileux. A cette monosiallitisation s’adjoint une bisiallitisation gouvernée par la richesse des sols en minéraux primaires. Ces sols sont aussi affectés par un phénomène de ferrallitisation et les paragenèses minérales de type kaolinite-hématite permettent de les définir comme étant caractéristiques d’une couvertured’altération mixte.Mots clés : Occurrences minéralogiques, phénomène d’argilation, ferrallitisation

    Green Infrastructure for London: A Review of the Evidence

    Get PDF

    Cell-permeable lanthanide-platinum(iv) anti-cancer prodrugs

    Get PDF
    Platinum compounds are a vital part of our anti-cancer arsenal, and determining the location and speciation of platinum compounds is crucial. We have synthesised a lanthanide complex bearing a salicylic group (Ln = Gd, Eu) which demonstrates excellent cellular accumulation and minimal cytotoxicity. Derivatisation enabled access to bimetallic lanthanide–platinum(II) and lanthanide–platinum(IV) complexes. Luminescence from the europium–platinum(IV) system was quenched, and reduction to platinum(II) with ascorbic acid resulted in a “switch-on” luminescence enhancement. We used diffusion-based 1H NMR spectroscopic methods to quantify cellular accumulation. The gadolinium–platinum(II) and gadolinium–platinum(IV) complexes demonstrated appreciable cytotoxicity. A longer delay following incubation before cytotoxicity was observed for the gadolinium–platinum(IV) compared to the gadolinium–platinum(II) complex. Functionalisation with octanoate ligands resulted in enhanced cellular accumulation and an even greater latency in cytotoxicity

    Properties of plasmoids observed in Saturn’s dayside and nightside magnetodisc

    Get PDF
    Plasmoid is a key structure for transferring magnetic flux and plasma in planetary magnetospheres. At Earth, plasmoids are key media which transfer energy and mass in the "Dungey Cycle". For giant planets, plasmoids are primarily generated by the dynamic processes associated with “Vasyliunas Cycle”. It is generally believed that planetary magnetotails are favorable for producing plasmoids. Nevertheless, recent studies reveal that magnetic field lines could be sufficiently stretched to allow magnetic reconnection in Saturn’s dayside magnetodisc. In the study, we report direct observations of plasmoids in Saturn’s dayside magnetodisc for the first time. Moreover, we perform a statistical investigation on the global plasmoid electron density distribution. The results show an inverse correlation between the nightside plasmoid electron density and local time, and the maximum plasmoid electron density around prenoon local time on the dayside. These results are consistent with the magnetospheric circulation picture associated with the "Vasyliunas Cycle"

    Two fundamentally different drivers of dipolarizations at Saturn

    Get PDF
    Solar wind energy is transferred to planetary magnetospheres via magnetopause reconnection, driving magnetospheric dynamics. At giant planets like Saturn, rapid rotation and internal plasma sources from geologically active moons also drive magnetospheric dynamics. In both cases, magnetic energy is regularly released via magnetospheric current redistributions that usually result in a change of the global magnetic field topology (named substorm dipolarization at Earth). Besides this substorm dipolarization, the front boundary of the reconnection outflow can also lead to a strong but localized magnetic dipolarization, named a reconnection front. The enhancement of the north-south magnetic component is usually adopted as the indicator of magnetic dipolarization. However, this field increase alone cannot distinguish between the two fundamentally different mechanisms. Using measurements from Cassini, we present multiple cases whereby we identify the two distinct types of dipolarization at Saturn. A comparison between Earth and Saturn provides new insight to revealing the energy dissipation in planetary magnetospheres

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Long-standing Small-scale Reconnection Processes at Saturn Revealed by Cassini

    Get PDF
    The internal mass source from the icy moon Enceladus in Saturn’s rapidly rotating magnetosphere drives electromagnetic dynamics in multiple spatial and temporal scales. The distribution and circulation of the internal plasma and associated energy are thus crucial in understanding Saturn’s magnetospheric environment. Magnetic reconnection is one of the key processes in driving plasma and energy transport in the magnetosphere, and also a fundamental plasma process in energizing charged particles. Recent works suggested that reconnection driven by Saturn’s rapid rotation might appear as a chain of microscale structures, named drizzle-like reconnection. The drizzle-like reconnection could exist not only in the nightside magnetodisk, but also in the dayside magnetodisk. Here, using in situ measurements from the Cassini spacecraft, we report multiple reconnection sites that were successively detected during a time interval longer than one rotation period. The time separation between two adjacently detected reconnection sites can be much less than one rotation period, implying that the reconnection processes are likely small-scale, or frequently repetitive. The spatial distribution of the identified long-standing multiple small reconnection site sequences shows no significant preference on local times. We propose that the small reconnection sites discussed in this Letter are rotationally driven and rotate with the magnetosphere. Since the reconnection process on Saturn can be long-durational, the rotational regime can cause these smallscale reconnection sites to spread to all local times, resulting in global release of energy and mass from the magnetosphere

    Structure and mechanism of human DNA polymerase η

    Get PDF
    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites

    Towards a large-scale quantum simulator on diamond surface at room temperature

    Full text link
    Strongly-correlated quantum many-body systems exhibits a variety of exotic phases with long-range quantum correlations, such as spin liquids and supersolids. Despite the rapid increase in computational power of modern computers, the numerical simulation of these complex systems becomes intractable even for a few dozens of particles. Feynman's idea of quantum simulators offers an innovative way to bypass this computational barrier. However, the proposed realizations of such devices either require very low temperatures (ultracold gases in optical lattices, trapped ions, superconducting devices) and considerable technological effort, or are extremely hard to scale in practice (NMR, linear optics). In this work, we propose a new architecture for a scalable quantum simulator that can operate at room temperature. It consists of strongly-interacting nuclear spins attached to the diamond surface by its direct chemical treatment, or by means of a functionalized graphene sheet. The initialization, control and read-out of this quantum simulator can be accomplished with nitrogen-vacancy centers implanted in diamond. The system can be engineered to simulate a wide variety of interesting strongly-correlated models with long-range dipole-dipole interactions. Due to the superior coherence time of nuclear spins and nitrogen-vacancy centers in diamond, our proposal offers new opportunities towards large-scale quantum simulation at room temperatures
    • …
    corecore