140 research outputs found
Sensory Neurons and Schwann Cells Respond to Oxidative Stress by Increasing Antioxidant Defense Mechanisms
Abstract Elevated blood glucose is a key initiator of mechanisms leading to diabetic neuropathy. Increases in glucose induce acute mitochondrial oxidative stress in dorsal root ganglion (DRG) neurons, the sensory neurons normally affected in diabetic neuropathy, whereas Schwann cells are largely unaffected. We propose that activation of an antioxidant response in DRG neurons would prevent glucose-induced injury. In this study, mild oxidative stress (1 μM H2O2) leads to the activation of the transcription factor Nrf2 and expression of antioxidant (phase II) enzymes. DRG neurons are thus protected from subsequent hyperglycemia-induced injury, as determined by activation of caspase 3 and the TUNEL assay. Schwann cells display high basal antioxidant enzyme expression and respond to hyperglycemia and mild oxidative stress via further increases in these enzymes. The botanical compounds resveratrol and sulforaphane activate the antioxidant response in DRG neurons. Other drugs that protect DRG neurons and block mitochondrial superoxide, identified in a compound screen, have differential ability to activate the antioxidant response. Multiple cellular targets exist for the prevention of hyperglycemic oxidative stress in DRG neurons, and these form the basis for new therapeutic strategies against diabetic neuropathy. Antioxid. Redox Signal. 11, 425-438.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78129/1/ars.2008.2235.pd
Diagnóstico das neuropatias periféricas idade, sexo e ocupação em relação às etiologias: age, sex and occupation in report to etiology
Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult
The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders
Investigação de neuropatia periférica durante o período recente do transplante de medula óssea
A case of delayed oxaliplatin-induced pseudo-obstruction: an atypical presentation of oxaliplatin neurotoxicity
Myelination determines the caliber of dorsal root ganglion neurons in culture
In order to understand the relationship of supporting cells to the differentiation of neurons in culture, we have used morphometry to study myelination of dorsal root ganglion (DRG) neurons by central or peripheral supporting cells. Dissociated DRG cultures from 15-day rat embryos, free of Schwann cells and fibroblasts, were prepared, and supporting cells were added from spinal cord or DRG; myelination commenced after 2 weeks. Control cultures received no supporting cells. At 7, 14, and 24 days, a total of 22 cultures were processed for electron microscopy. Three fascicles from defined points were sampled from each culture. In cultures containing glial cells, smaller fibers (p less than 0.001) were myelinated (mean of median diameter, 1.13 +/- 0.13 (SD) micron) than in cultures containing Schwann cells (1.67 +/- 0.17 micron), although there was no difference (p greater than 0.1) in the degree of myelination expressed as number of myelin lamellae/fiber. A new finding concerned the relationship of axonal diameter to the presence or absence of myelinating cells. In control cultures without supporting cells or in areas where supporting cells were absent, the range of neurite diameter (0.05 to 1.25 micron) and the median diameter (mean of median, 0.24 +/- 0.03 micron) were similar at different times (7, 14, and 24 days), demonstrating a stable population of neurite diameters throughout the period. In myelinated fascicles, a different distribution of neurite diameters was present. Myelinated neurites had a greater median diameter (measured to inner border of myelin) and a different range of fiber diameters compared to bare neurites. For Schwann cells, this range was 0.7 to 3.4 micron, and the mean of median diameters was 1.67 +/- 0.17 micron; for glial cells, the range was 0.6 to 2.4 micron, and the mean of median diameters 1.13 +/- 0.13 micron. Differences between myelinated and bare fibers were all highly significant (p less than 0.001)
Expression of high- and low-affinity neurotrophin receptors on human transformed B lymphocytes.
- …
