25 research outputs found
Pauli's Principle in Probe Microscopy
Exceptionally clear images of intramolecular structure can be attained in
dynamic force microscopy through the combination of a passivated tip apex and
operation in what has become known as the "Pauli exclusion regime" of the
tip-sample interaction. We discuss, from an experimentalist's perspective, a
number of aspects of the exclusion principle which underpin this ability to
achieve submolecular resolution. Our particular focus is on the origins,
history, and interpretation of Pauli's principle in the context of interatomic
and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using
Dynamic Force Microscopy", a book which is part of the "Advances in Atom and
Single Molecule Machines" series published by Springer
[http://www.springer.com/series/10425]. To be published late 201
Recommended from our members
Robust image analysis with sparse representation on quantized visual features
10.1109/TIP.2012.2219543IEEE Transactions on Image Processing223860-871IIPR
2-deoxy-L-ribose from an L-arabinono-1,5-lactone
A practical synthesis of 2-deoxy-L-ribose from L-arabinose depends on the efficient reduction by iodide of a triflate α to a lactone. The X-ray crystal structure of 3,4-O-isopropylidene-L-arabinono-1,5-lactone is reported. © 2002 Published by Elsevier Science Ltd
Interatomic force laws that evade dynamic measurement
Measurement of the force between two atoms is performed routinely with the atomic force microscope. The shape of this interatomic force law is now found to directly regulate this capability: rapidly varying interatomic force laws, which are common in nature, can corrupt their own measurement
Control of quantum magnets by atomic exchange bias
Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump–probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling