25 research outputs found

    The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model

    Get PDF
    We use a global ocean general circulation model (OGCM) with low vertical diffusion and isopycnal mixing to simulate the circulation in the Atlantic Ocean at present-day and the Last Glacial Maximum (LGM). The OGCM includes d18O as a passive tracer. Regarding the LGM sea-surface boundary conditions, the temperature is based on the GLAMAP reconstruction, the salinity is estimated from the available d18O data, and the wind-stress is derived from the output of an atmospheric general circulation model. Our focus is on changes in the upper-ocean hydrology, the large-scale horizontal circulation and the d18O distribution. In a series of LGM experiments with a step-wise increase of the sea-surface salinity anomaly in the Weddell Sea, the ventilated thermocline was colder than today by 2 3°C in the North Atlantic Ocean and, in the experiment with the largest anomaly (1.0 beyond the global anomaly), by 4-5°C in the South Atlantic Ocean; furthermore it was generally shallower. As the meridional density gradient grew, the Antarctic Circumpolar Current strengthened and its northern boundary approached Cape of Good Hope. At the same time the southward penetration of the Agulhas Current was reduced, and less thermocline-to-intermediate water slipped from the Indian Ocean along the southern rim of the African continent into the South Atlantic Ocean; the 'Agulhas leakage' was diminished by up to 60% with respect to its modern value, such that the cold water route became the dominant path for North Atlantic Deep Water (NADW) renewal. It can be speculated that the simulated intensification of the Benguela Current and the enhancement of NADW upwelling in the Southern Ocean might reduce the import of silicate into the Benguela System, which could possibly resolve the 'Walvis Opal Paradox'. Although d18Ow was restored to the same surface values and could only reflect changes in advection and diffusion, the resulting d18Oc distribution came close to reconstructions based on fossil shells of benthic foraminifera

    The Flower Garden Banks Siderastrea siderea coral as a candidate global boundary stratotype section and point for the Anthropocene series

    No full text
    The proposed Anthropocene Global Boundary Stratotype Section and Point (GSSP) candidate site of West Flower Garden Bank (27.8762°N, 93.8147°W) is an open ocean location in the Gulf of Mexico with a submerged coral reef and few direct human impacts. Corals contain highly accurate and precise (<±1 year) internal chronologies, similar to tree rings, and their exoskeletons are formed of aragonite and can be preserved in the rock record. Here we present results from a large Siderastrea siderea coral (core 05WFGB3; 1755–2005 CE) sampled with annual and monthly resolutions that show clear markers of global and regional human impacts. Atmospheric nuclear bomb testing by-products (14C, 239+240Pu) have clear increases in this coral starting in 1957 for 14C and the first increase in 1956 for 239+240Pu (potential bases for the Anthropocene GSSP). Coral δ13C declined especially after 1956 consistent with the Suess Effect resulting from the burning of fossil fuels. Coral skeletal δ15N starts to increase in 1963 corresponding with the increase in agricultural fertilizers. Coral Hg concentrations (1933–1980) loosely track fluctuations in industrial pollution and coral Ba/Ca increases from 1965–1983 when offshore oil operations expand after 1947. Coral temperature proxies contain the 20th-century global warming trend whereas coral growth declines during this interval.</p
    corecore