35 research outputs found

    Effects of Ionomycin on Egg Activation and Early Development in Starfish

    Get PDF
    Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation

    Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types.</p> <p>Results</p> <p>Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border.</p> <p>Conclusion</p> <p>Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.</p

    Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk

    Get PDF
    INTRODUCTION: The association between use of nonsteroidal anti-inflammatory drugs (NSAIDs) and breast cancer risk remains unclear. Inconsistencies in previously reported findings may be partly due to differences in expression of cyclooxygenase (COX)-2. We hypothesized that genetic polymorphisms (COX-2 .926, COX-2 .5209, and COX-2 .8473) may reduce overall breast cancer risk or risk for subtypes of breast cancer by modulating the inflammatory response and may interact with aspirin or any NSAID use. METHODS: We conducted a population-based, case-control study in which we genotyped 1,067 breast cancer cases and 1,110 control individuals included in the Long Island Breast Cancer Study Project. RESULTS: No major effects of the three COX-2 variant alleles on breast cancer risk were found. A total of eight distinct haplotypes and 18 diplotypes were observed in the population. Overall, no significant associations between COX-2 haplotypes/diplotypes and breast cancer risk were observed. Among women who used aspirin or any NSAID there was little evidence for an interaction with the at-risk COX-2 genotypes, with one exception. Among women with hormone receptor positive breast cancer, the reduced risk for any NSAID use was only evident among those who had at least one variant C allele of COX-2 .8473 (odds ratio = 0.7, 95% confidence interval = 0.5 to 1.0; P for the interaction = 0.02). There was no corresponding interaction for aspirin use, possibly because of limited power. CONCLUSION: These data provide modest evidence that the C allele of COX-2 .8473 may interact with NSAIDs to reduce risk for hormone receptor positive breast cancer

    Selenium, Selenoenzymes, Oxidative Stress and Risk of Neoplastic Progression from Barrett's Esophagus: Results from Biomarkers and Genetic Variants

    Get PDF
    Clinical trials have suggested a protective effect of selenium supplementation on the risk of esophageal cancer, which may be mediated through the antioxidant activity of selenoenzymes. We investigated whether serum selenium concentrations, selenoenzyme activity, oxidative stress and genetic variation in selenoenzymes were associated with the risk of neoplastic progression to esophageal adenocarcinoma (EA) and two intermediate endpoints, aneuploidy and tetraploidy. In this prospective cohort study, during an average follow-up of 7.3 years, 47 EA cases, 41 aneuploidy cases and 51 tetraploidy cases accrued among 361 participants from the Seattle Barrett's Esophagus Research Study who were free of EA at the time of blood draw and had at least one follow-up visit. Development to EA was assessed histologically and aneuploidy and tetraploidy by DNA content flow cytometry. Serum selenium concentrations were measured using atomic absorption spectrometry, activity of glutathione peroxidase (GPX) 1 and GPX3 by substrate-specific coupled test procedures, selenoprotein P (SEPP1) concentrations and protein carbonyl content by ELISA method and malondialdehyde concentrations by HPLC. Genetic variants in GPX1-4 and SEPP1 were genotyped. Serum selenium was not associated with the risk of neoplastic progression to EA, aneuploidy or tetraploidy (P for trendβ€Š=β€Š0.25 to 0.85). SEPP1 concentrations were positively associated with the risk of EA [hazard ratio (HR)β€Š=β€Š3.95, 95% confidence intervals (CI)β€Š=β€Š1.42–10.97 comparing the third tertile with the first] and with aneuploidy (HRβ€Š=β€Š6.53, 95% CIβ€Š=β€Š1.31–32.58), but not selenoenzyme activity or oxidative stress markers. No genetic variants, overall, were associated with the risk of neoplastic progression to EA (global pβ€Š=β€Š0.12–0.69). Our results do not support a protective effect of selenium on risk of neoplastic progression to EA. Our study is the first to report positive associations of plasma SEPP1 concentrations with the risk of EA and aneuploidy, which warrants further investigation

    Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus

    Get PDF
    Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron

    The potential role of dentists in HIV screening

    No full text
    Recent evidence suggests there is a role for the dental team, particularly dentists, in offering chairside HIV screening to patients during dental appointments. HIV is no longer a death sentence with early diagnosis and effective treatment contributing to a good prognosis. Despite the availability of both venipuncture diagnostic and rapid saliva/finger prick screening tests for HIV infection, 25% of people living with HIV in the United Kingdom are undiagnosed and remain at risk of transmitting their infection if having unprotected sex. This paper highlights the international evidence that supports dentists' willingness to conduct HIV screening and dental patient acceptance, and explores whether this is an opportunity or a step too far
    corecore