48 research outputs found

    The aromatase inhibitor letrozole and inhibitors of insulin-like growth factor I receptor synergistically induce apoptosis in in vitro models of estrogen-dependent breast cancer

    Get PDF
    INTRODUCTION: Endocrine-dependent, estrogen receptor positive breast cancer cells proliferate in response to estrogens, synthesized by the cytochrome p450 aromatase enzyme. Letrozole is a potent nonsteroidal aromatase inhibitor that is registered for the treatment of postmenopausal women with advanced metastatic breast cancers and in the neoadjuvant, early, and extended adjuvant indications. Because crosstalk exists between estrogen receptor and insulin-like growth factor I receptor (IGF-IR), the effect of combining a selective IGF-IR inhibitor (NVP-AEW541) with letrozole was assessed in two independent in vitro models of estrogen-dependent breast cancer. METHODS: MCF7 and T47D cells stably expressing aromatase (MCF7/Aro and T47D/Aro) were used as in vitro models of aromatase-driven breast cancer. The role of the IGF-IR pathway in breast cancer cells stimulated only by 17ß-estradiol or androstenedione was assessed by proliferation assays. The combination of letrozole and NVP-AEW541 was assessed for synergy in inhibiting cell proliferation using Chou-Talalay derived equations. Finally, combination or single agent effects on proliferation and apoptosis were assessed using proliferation assays, flow cytometry, and immunoblotting. RESULTS: Both MCF7 and T47D cells, as well as MCF7/Aro and T47D/Aro, exhibited sensitivity to inhibition of 17ß-estradiol dependent proliferation by NVP-AEW541. Letrozole combined with NVP-AEW541 synergistically inhibited androstenedione-dependent proliferation in aromatase-expressing cells with combination index values of 0.6 or less. Synergistic combination effects correlated with higher levels of apoptosis as compared with cells treated with the single agent alone. Treatment with either agent also appeared to inhibit IGF-IR signalling via phosphoinositide 3-kinase. Notably, IGF-IR inhibition had limited effect on estrogen-dependent proliferation in the cell lines, but was clearly required for survival, suggesting that the combination of letrozole and IGF-IR inhibition sensitizes cells to apoptosis. CONCLUSION: Inhibition of the IGF-IR pathway and aromatase was synergistic in two independent estrogen-dependent in vitro models of breast cancer. Moreover, synergism of NVP-AEW541 and letrozole correlated with induction of apoptosis, but not cell cycle arrest, in the cell lines tested. Combination of IGF-IR inhibitors and letrozole may hold promise for the treatment of patients with estrogen-dependent breast cancers

    Constitutive MAP Kinase Activation in Hematopoietic Stem Cells Induces a Myeloproliferative Disorder

    Get PDF
    Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPNs) are a group of myeloid neoplasms in which abnormal activation of the Ras signaling pathway is commonly observed. The PI3K/Akt pathway is a known target of Ras; however, activation of the PI3K/Akt pathway has been shown to lead to neoplastic transformation of not only myeloid but also lymphoid cells, suggesting that pathways other than the PI3K/Akt pathway should play a central role in pathogenesis of Ras-mediated MDS/MPN. The MEK/ERK pathway is another downstream target of Ras, which is involved in regulation of cell survival and proliferation. However, the role of the MEK/ERK pathway in the pathogenesis of MDS/MPN remains unclear. Here, we show that introduction of a constitutively activated form of MEK into hematopoietic stem cells (HSCs) causes hematopoietic neoplasms that are limited to MDS/MPNs, despite the multipotent differentiation potential of HSCs. Active MEK-mediated MDS/MPNs are lethal, but are not considered a frank leukemia because it cannot be transplanted into naïve animals. However, transplantation of MDS/MPNs co-expressing active MEK and an anti-apoptotic molecule, Bcl-2, results in T-cell acute lymphocytic leukemia (T-ALL), suggesting that longevity of cells may impact transplantability and alter disease phenotype. Our results clearly demonstrate the proto-oncogenic property of the MEK/ERK pathway in hematopoietic cells, which manifest in MDS/MPN development

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Erratum to: Biomechanical comparison of graft structures in anterior cruciate ligament reconstruction (vol 25, pg 559, 2017)

    No full text
    Purpose: Double-bundle (DB) anterior cruciate ligament (ACL) reconstruction may offer kinematic restoration superior to anatomic single bundle (SB), but it remains technically challenging. The femoral attachment site has the most effect on ACL graft isometry, so a simplified three-socket (3S) construct which still uses two sockets to cover the femoral ACL attachment is attractive. It was hypothesised that ACL reconstruction using three- and four-socket techniques would more closely restore native knee kinematics compared to anatomic two-socket (SB) surgery. Methods: Nine cadaveric knees were used to evaluate the kinematics of ACL-intact, ACL-deficient, anatomic SB, three-socket, and DB arthroscopic ACL reconstructions. Suspensory fixation was used, and grafts were tensioned to match the anterior draw of the intact knee at 20°. A six-degree-of-freedom robotic system measured knee laxity under 90 N anterior tibial force and rotational laxity under 5 N-m torque. Combined moments were applied to simulate the pivot-shift subluxation: 4 N-m internal rotation and 8 N-m valgus. Results: Significant differences between reconstructions were not found during anterior tibial loading, apart from SB being more lax than DB at 60° flexion. All reconstructions produced comparable laxity to the intact state, apart from SB at 60°. Significant differences between reconstructions were not found at any flexion angle during tibial internal/external applied torques. Under combined loading, DB produced significantly less laxity than SB constructs apart from anterior tibial translation at 0° and internal rotation at 45°. 3S and DB were comparable to the native knee throughout. Conclusion: Although 3S restored laxities to a similar extent to DB, significant superiority over SB surgery was not observed. Although statistically significant differences were found between SB and DB surgery during anterior tibial and simulated pivot-shift loading, both remained similar to the native knee. The clinical relevance is that this study did not support an ACL graft construct more complex than an anatomic single bundle

    Dual response to Ras mutation

    No full text
    corecore