25 research outputs found
Does parity matter in women’s risk of dementia? A COSMIC collaboration cohort study
Background
Dementia shows sex difference in its epidemiology. Childbirth, a distinctive experience of women, is associated with the risk for various diseases. However, its association with the risk of dementia in women has rarely been studied.
Methods
We harmonized and pooled baseline data from 11 population-based cohorts from 11 countries over 3 continents, including 14,792 women aged 60 years or older. We investigated the association between parity and the risk of dementia using logistic regression models that adjusted for age, educational level, hypertension, diabetes mellitus, and cohort, with additional analyses by region and dementia subtype.
Results
Across all cohorts, grand multiparous (5 or more childbirths) women had a 47% greater risk of dementia than primiparous (1 childbirth) women (odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.10–1.94), while nulliparous (no childbirth) women and women with 2 to 4 childbirths showed a comparable dementia risk to primiparous women. However, there were differences associated with region and dementia subtype. Compared to women with 1 to 4 childbirths, grand multiparous women showed a higher risk of dementia in Europe (OR = 2.99, 95% CI = 1.38–6.47) and Latin America (OR = 1.49, 95% CI = 1.04–2.12), while nulliparous women showed a higher dementia risk in Asia (OR = 2.15, 95% CI = 1.33–3.47). Grand multiparity was associated with 6.9-fold higher risk of vascular dementia in Europe (OR = 6.86, 95% CI = 1.81–26.08), whereas nulliparity was associated with a higher risk of Alzheimer disease (OR = 1.91, 95% CI 1.07–3.39) and non-Alzheimer non-vascular dementia (OR = 3.47, 95% CI = 1.44–8.35) in Asia.
Conclusion
Parity is associated with women’s risk of dementia, though this is not uniform across regions and dementia subtypes
Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration
We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals
Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect
Background: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like ‘‘friend’’ and ‘‘foe’’ are attributed to colony odors. Methodology/Principal Findings: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors
