26 research outputs found
Wettability-independent bouncing on flat surfaces mediated by thin air films
The impingement of drops onto solid surfaces1, 2 plays a crucial role in a variety of processes, including inkjet printing, fog harvesting, anti-icing, dropwise condensation and spray coating3, 4, 5, 6. Recent efforts in understanding and controlling drop impact behaviour focused on superhydrophobic surfaces with specific surface structures enabling drop bouncing with reduced contact time7, 8. Here, we report a different universal bouncing mechanism that occurs on both wetting and non-wetting flat surfaces for both high and low surface tension liquids. Using high-speed multiple-wavelength interferometry9, we show that this bouncing mechanism is based on the continuous presence of an air film for moderate drop impact velocities. This submicrometre ‘air cushion’ slows down the incoming drop and reverses its momentum. Viscous forces in the air film play a key role in this process: they provide transient stability of the air cushion against squeeze-out, mediate momentum transfer, and contribute a substantial part of the energy dissipation during bouncing
Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces
Ice adhesion is mainly dictated by surface properties, and water wettability is frequently correlated with ice adhesion strength. However, these established correlations are limited to high ice adhesion and become invalid when the ice adhesion strength is low. Here we carried out an experimental study to explore the relationships between low ice adhesion strength and room temperature surface properties. A variety of room temperature properties of 22 polymer-based hydrophilic and hydrophobic samples consisting of both low and high ice adhesion surfaces were analysed. The properties investigated include water adhesion force, water wettability, roughness, elastic modulus and hardness. Our results show that low ice adhesion strength does not correlate well with water contact angle and its variants, surface roughness and hardness. Low elastic modulus does not guarantee low ice adhesion, however, surfaces with low ice adhesion always show low elastic modulus. Low ice adhesion (below 60 kPa) of tested surfaces may be determinative of small water adhesion force (from 180 to 270 μN). Therefore, measurement of water adhesion force may provide an effective strategy for screening anti-icing or icephobic surfaces, and surfaces within specific values of water adhesion force will possibly lead to a low ice adhesion
