15 research outputs found

    The Potential and Challenges of Nanopore Sequencing

    Get PDF
    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic

    Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation

    No full text
    Potassium glutamate accumulates upon hyper-osmotic shock and serves as a temporary osmoprotectant. This salt leads to transcriptional activation of sets of genes that allow the cell to achieve long-term adaptation to high osmolarity. The current experiments show that potassium glutamate also acts as an inhibitor of bulk cellular transcription. It can do so independent of the involvement of macromolecular repressors or activators by virtue of its ability to directly inhibit RNA polymerase binding to ribosomal promoters. Thus, potassium glutamate mediates a global transcription switch by acting differentially on RNA polymerase at sets of genomic promoters that differ in their built-in direct response to this salt
    corecore