10,506 research outputs found

    Reduced mechanical efficiency in left-ventricular trabeculae of the spontaneously hypertensive rat.

    Get PDF
    Long-term systemic arterial hypertension, and its associated compensatory response of left-ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left-ventricular trabeculae from SHR-F hearts and contrasted their mechanoenergetic performance with those from nonfailing SHR (SHR-NF) and normotensive Wistar rats. Our results show that, whereas the performance of the SHR-F differed little from that of the SHR-NF, both SHR groups performed less stress-length work than that of Wistar trabeculae. Their lower work output arose from reduced ability to produce sufficient force and shortening. Neither their heat production nor their enthalpy output (the sum of work and heat), particularly the energy cost of Ca(2+) cycling, differed from that of the Wistar controls. Consequently, mechanical efficiency (the ratio of work to change of enthalpy) of both SHR groups was lower than that of the Wistar trabeculae. Our data suggest that in hypertension-induced left-ventricular hypertrophy, the mechanical performance of the tissue is compromised such that myocardial efficiency is reduced

    Quaternion algebras with the same subfields

    Get PDF
    G. Prasad and A. Rapinchuk asked if two quaternion division F -algebras that have the same subfields are necessarily isomorphic. The answer is known to be "no" for some very large fields. We prove that the answer is "yes" if F is an extension of a global field K so that F /K is unirational and has zero unramified Brauer group. We also prove a similar result for Pfister forms and give an application to tractable fields

    Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats

    Get PDF
    New diagnostics of the Madden-Julian Oscillation (MJO) cycle in ocean temperature and, for the first time, salinity are presented. The MJO composites are based on 4 years of gridded Argo float data from 2003 to 2006, and extend from the surface to 1,400 m depth in the tropical Indian and Pacific Oceans. The MJO surface salinity anomalies are consistent with precipitation minus evaporation fluxes in the Indian Ocean, and with anomalous zonal advection in the Pacific. The Argo sea surface temperature and thermocline depth anomalies are consistent with previous studies using other data sets. The near-surface density changes due to salinity are comparable to, and partially offset, those due to temperature, emphasising the importance of including salinity as well as temperature changes in mixed-layer modelling of tropical intraseasonal processes. The MJO-forced equatorial Kelvin wave that propagates along the thermocline in the Pacific extends down into the deep ocean, to at least 1,400 m. Coherent, statistically significant, MJO temperature and salinity anomalies are also present in the deep Indian Ocean

    Picosecond photoisomerization and rotational reorientation dynamics in solution

    Get PDF
    The trans-cis isomerization rates for stiff-diphenylbutadiene (S-DPB) in n-alkane solvents were measured using single photon counting methods and the rotational reorientation times τR for S-DPB and trans stilbene were obtained by picosecond polarization spectroscopy. In neither case did τR VS viscosity show Stokes-Einstein-Debye (SED) behavior. The values of τR were used to calculate the angular velocity correlation frequencies β using the Hubbard relation. The variation of isomerization rate with β was found to be predicted well by the Kramers equation when barrier frequencies of 154 cm-1 for stilbene and 16 cm-1 for S-DPB were used. This Kramers-Hubbard fit finesses questions regarding the validity of the one dimensional Kramers model and focuses attention on the SED equation. The dynamical relationship between the torsional friction, important in isomerization, and rotational friction, which determines the overall angular motion of the molecules, is discussed

    Rotational Relaxation of Free and Solvated Rotors

    Get PDF

    Carbon nanotube-reduced graphene oxide fiber with high torsional strength from rheological hierarchy control

    Get PDF
    High torsional strength fibers are of practical interest for applications such as artificial muscles, electric generators, and actuators. Herein, we maximize torsional strength by understanding, measuring, and overcoming rheological thresholds of nanocarbon (nanotube/graphene oxide) dopes. The formed fibers show enhanced structure across multiple length scales, modified hierarchy, and improved mechanical properties. In particular, the torsional properties were examined, with high shear strength (914 MPa) attributed to nanotubes but magnified by their structure, intercalating graphene sheets. This design approach has the potential to realize the hierarchical dimensional hybrids, and may also be useful to build the effective network structure of heterogeneous materials
    • …
    corecore