43 research outputs found

    One-step synthesis of PbSe-ZnSe composite thin film

    Get PDF
    This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD) from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package

    Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins

    Get PDF
    Addition of a 50 mM mixture of l-arginine and l-glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE

    Reply to the comments on “Room-temperature precipitation in quenched Al-Cu-Mg alloys: a model for the reaction kinetics and yield-strength development”

    No full text
    Our recent work on Al-Cu-Mg-based alloys with Cu:Mg ratio close to unity showed that the rapid hardening at room temperature and the substantial heat evolution arising from the formation of Cu-Mg co-clusters. Here, it is shown that the measured enthalpy of formation of clusters (similar to 0.3 eV per Mg atom) is in reasonable agreement with expectations based on the similarity with Mg-vacancy clusters. The origin of the term GPB zones, as applied to the rapid hardening in Al-Cu-Mg-based alloys, is investigated. It is shown that current knowledge on the nanostucture and microstructure development during rapid hardening can be described without recourse to this alloy-specific term. Analysis of the kinetics of Cu-Mg co-clusters formation by DSC indicates that the formation of Cu-Mg co-cluster formation during a fast water quench can be sufficiently suppressed to cause substantial nucleation of co-clusters to occur in subsequent natural ageing and artificial ageing at low temperatures

    Complementing structural information of modular proteins with small angle neutron scattering and contrast variation

    No full text
    Many macromolecules in the cell function by forming multi-component assemblies. We have applied the technique of small angle neutron scattering to study a nucleic acid–protein complex and a multi-protein complex. The results illustrate the versatility and applicability of the method to study macromolecular assemblies. The neutron scattering experiments, complementing X-ray solution scattering data, reveal that the conserved catalytic domain of RNase E, an essential ribonuclease in Escherichia coli (E. coli), undergoes a marked conformational change upon binding a 5′monophosphate–RNA substrate analogue. This provides the first evidence in support of an allosteric mechanism that brings about RNA substrate cleavage. Neutron contrast variation of the multi-protein TIM10 complex, a mitochondrial chaperone assembly comprising the subunits Tim9 and Tim10, has been used to determine a low-resolution shape reconstruction of the complex, highlighting the integral subunit organization. It shows characteristic features involving protrusions that could be assigned to the six subunits forming the complex
    corecore