71 research outputs found

    Long-Term Effects of the Cleaner Fish Labroides dimidiatus on Coral Reef Fish Communities

    Get PDF
    Cleaning behaviour is deemed a mutualism, however the benefit of cleaning interactions to client individuals is unknown. Furthermore, mechanisms that may shift fish community structure in the presence of cleaning organisms are unclear. Here we show that on patch reefs (61–285 m2) which had all cleaner wrasse Labroides dimidiatus (Labridae) experimentally removed (1–5 adults reef−1) and which were then maintained cleaner-fish free over 8.5 years, individuals of two site-attached (resident) client damselfishes (Pomacentridae) were smaller compared to those on control reefs. Furthermore, resident fishes were 37% less abundant and 23% less species rich per reef, compared to control reefs. Such changes in site-attached fish may reflect lower fish growth rates and/or survivorship. Additionally, juveniles of visitors (fish likely to move between reefs) were 65% less abundant on removal reefs suggesting cleaners may also affect recruitment. This may, in part, explain the 23% lower abundance and 33% lower species richness of visitor fishes, and 66% lower abundance of visitor herbivores (Acanthuridae) on removal reefs that we also observed. This is the first study to demonstrate a benefit of cleaning behaviour to client individuals, in the form of increased size, and to elucidate potential mechanisms leading to community-wide effects on the fish population. Many of the fish groups affected may also indirectly affect other reef organisms, thus further impacting the reef community. The large-scale effect of the presence of the relatively small and uncommon fish, Labroides dimidiadus, on other fishes is unparalleled on coral reefs

    YARN PARAMETERS INFLUENCING THE KNITTABILITY OF HIGH-GRADE SPUN YARNS

    Get PDF
    Noncollinear magnetism can play an important role in multiferroic materials but is relatively understudied in oxide heterostructures compared to their bulk counterparts. Using variable temperature magnetometry and neutron diffraction, we demonstrate the presence of helical magnetic ordering in CaMn7O12 and Ca1−xSrxMn7O12 (for x up to 0.51) thin films. Consistent with bulk Ca1−xSrxMn7O12, the net magnetization increases with Sr doping. Neutron diffraction confirms that the helical magnetic structure remains incommensurate at all values of x, while the fundamental magnetic wavevector increases upon Sr substitution. This result demonstrates a chemical-based approach for tuning helical magnetism in quadruple perovskite films and enables future studies of strain and interfacial effects on helimagnetism in oxide heterostructures

    The cys-loop ligand-gated ion channel gene superfamily of the nematode, Caenorhabditis elegans

    Get PDF
    The nematode, Caenorhabditis elegans, possesses the most extensive known superfamily of cys-loop ligand-gated ion channels (cys-loop LGICs) consisting of 102 subunit-encoding genes. Less than half of these genes have been functionally characterised which include cation-permeable channels gated by acetylcholine (ACh) and γ-aminobutyric acid (GABA) as well as anion-selective channels gated by ACh, GABA, glutamate and serotonin. Following the guidelines set for genetic nomenclature for C. elegans, we have designated unnamed subunits as lgc genes (ligand-gated ion channels of the cys-loop superfamily). Phylogenetic analysis shows that several of these lgc subunits form distinct groups which may represent novel cys-loop LGIC subtypes
    corecore