10 research outputs found
Dual TNFα-induced effects on NRF2 mediated antioxidant defence in astrocyte-rich cultures: role of protein kinase activation
Tumor necrosis factor-α (TNFα) is a pleiotropic molecule that can have both protective and detrimental effects in neurodegeneration. Here we have investigated the temporal effects of TNFα on the inducible Nrf2 system in astrocyte-rich cultures by determination of glutathione (GSH) levels, γglutamylcysteine ligase (γGCL) activity, the protein levels of Nrf2, Keap1, the catalytic and modulatory subunit of γGCL (γGCL-C and γGCL-M respectively). Astrocyte-rich cultures were exposed for 24 or 72 h to different concentrations of TNFα. Acute exposure (24 h) of astrocyte-rich cultures to 10 ng/mL of TNFα increased GSH, γGCL activity, the protein levels of γGCL-M, γGCL-C and Nrf2 in parallel with decreased levels of Keap1. Antioxidant responsive element (ARE)-mediated transcription was blocked by inhibitors of ERK1/2, JNK and Akt whereas inactivation of p38 and GSK3β further enhanced transcription. In contrast treatment with TNFα for 72 h decreased components of the Nrf2 system in parallel with an increase of Keap1. Stimulation of the Nrf2 system by tBHQ was intact after 24 h but blocked after 72 h treatment with TNFα. This down-regulation after 72 h correlated with activation of p38 MAPK and GSK3β, since inhibition of these signalling pathways reversed this effect. The upregulation of the Nrf2 system by TNFα (24 h treatment) protected the cells from oxidative stress through elevated γGCL activity whereas the down-regulation (72 h treatment) caused pronounced oxidative toxicity. One of the important implications of the results is that in a situation where Nrf2 is decreased, such as in Alzheimer’s disease, the effect of TNFα is detrimental.Fil: Correa, Fernando Gabriel. University Goteborg; Suecia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mallard, Carina. University Goteborg; SueciaFil: Nilsson, Michael. University Goteborg; SueciaFil: Sandberg, Mats. University Goteborg; Sueci
Cigarette smoke extract is a Nox agonist and regulates ENaC in alveolar type 2 cells
There is considerable evidence that cigarette smoking is the primary etiology of chronic obstructive pulmonary disease (COPD), and that oxidative stress occurs in COPD with the family of tissue nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes playing a significant role in lung pathogenesis. The purpose of this study was to determine the effects of cigarette smoke extract (CSE) on Nox signaling to epithelial sodium channels (ENaCs). Pre-treatment with diphenyleneiodonium (DPI), a pan-Nox inhibitor, prevented stimulatory effects of CSE on ENaC activity; open probability (Po) changed from 0.36 ± 0.09 to 0.11 ± 0.02; n = 10, p = 0.01 following CSE and DPI exposure. Likewise, Fulvene-5 (which inhibits Nox2 and Nox4 isoforms) decreased the number of ENaC per patch (from 2.75 ± 0.25 to 1 ± 0.5, n = 9, p = 0.002) and open probability (0.18 ± 0.08 to 0.02 ± 0.08, p = 0.04). Cycloheximide chase assays show that CSE exposure prevented α-ENaC subunit degradation, whereas concurrent CSE exposure in the presence of Nox inhibitor, Fulvene 5, resulted in normal proteolytic degradation of α-ENaC protein in primary isolated lung cells. In vivo, co-instillation of CSE and Nox inhibitor promoted alveolar flooding in C57Bl6 mice compared to accelerated rates of fluid clearance observed in CSE alone instilled lungs. Real-time PCR indicates that mRNA levels of Nox2 were unaffected by CSE treatment while Nox4 transcript levels significantly increased 3.5 fold in response to CSE. Data indicate that CSE is an agonist of Nox4 enzymatic activity, and that CSE-mediated Nox4 plays an important role in altering lung ENaC activity