41 research outputs found

    Characterizing the multi-dimensional reaction dynamics of dihalomethanes using XUV-induced Coulomb explosion imaging

    Get PDF
    Site-selective probing of iodine 4d orbitals at 13.1 nm was used to characterize the photolysis of CH2I2 and CH2BrI initiated at 202.5 nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2I2, the structural evolution of the neutral molecule was simultaneously characterized along the C-I and I-C-I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Time-resolved site-selective imaging of predissociation and charge transfer dynamics: the CH3I B-band

    No full text
    The predissociation dynamics of the 6s (B2E) Rydberg state of gas-phase CH3I were investigated by time-resolved Coulomb-explosion imaging using extreme ultraviolet (XUV) free-electron laser pulses. Inner-shell ionization at the iodine 4d edge was utilized to provide a site-specific probe of the ensuing dynamics. The combination of a velocity-map imaging (VMI) spectrometer coupled with the pixel imaging mass spectrometry (PImMS) camera permitted three-dimensional ionic fragment momenta to be recorded simultaneously for a wide range of iodine charge states. In accord with previous studies, initial excitation at 201.2 nm results in internal conversion and subsequent dissociation on the lower-lying A-state surface on a picosecond time scale. Examination of the time-dependent yield of low kinetic energy iodine fragments yields mechanistic insights into the predissociation and subsequent charge transfer following multiple ionization of the iodine products. The effect of charge transfer was observed through differing delay-dependencies of the various iodine charge states, from which critical internuclear distances for charge transfer could be inferred and compared to a classical over-the-barrier model. Time-dependent photofragment angular anisotropy parameters were extracted from the central slice of the Newton sphere, without Abel inversion, and highlight the effect of rotation of the parent molecule before dissociation, as observed in previous works. Our results demonstrate the ability to perform three-dimensional ion imaging at high event rates and showcase the potential benefits of this approach, particularly in relation to further time-resolved studies at free-electron laser facilities

    Time variance and defect prediction in software projects

    Full text link
    It is crucial for a software manager to know whether or not one can rely on a bug prediction model. A wrong prediction of the number or the location of future bugs can lead to problems in the achievement of a project’s goals. In this paper we first verify the existence of variability in a bug prediction model’s accuracy over time both visually and statistically. Furthermore, we explore the reasons for such a highvariability over time, which includes periods of stability and variability of prediction quality, and formulate a decision procedure for evaluating prediction models before applying them. To exemplify our findings we use data from four open source projects and empirically identify various project features that influence the defect prediction quality. Specifically, we observed that a change in the number of authors editing a file and the number of defects fixed by them influence the prediction quality. Finally, we introduce an approach to estimate the accuracy of prediction models that helps a project manager decide when to rely on a prediction model. Our findings suggest that one should be aware of the periods of stability and variability of prediction quality and should use approaches such as ours to assess their models’ accuracy in advance
    corecore