38 research outputs found

    Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions

    Get PDF
    The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale

    Triclocarban Mediates Induction of Xenobiotic Metabolism through Activation of the Constitutive Androstane Receptor and the Estrogen Receptor Alpha

    Get PDF
    Triclocarban (3,4,4′-trichlorocarbanilide, TCC) is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs). To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR) and estrogen receptor alpha (ERα) activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR) because no induction occurred in hUGT1Car−/− mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for potential human health effects from exposure to TCC

    Detecting impacts of invasive non-native sharptooth catfish, Clarias gariepinus, within invaded and non-invaded rivers.

    Get PDF
    In aquatic ecosystems, impacts by invasive introduced fish can be likened to press disturbances that persistently influence communities. This study examined invasion disturbances by determining the relationship between non-native sharptooth catfish Clarias gariepinus and aquatic macroinvertebrates in the Eastern Cape, South Africa. A Multiple Before–After Control–Impact (MBACI) experimental design was used to examine macroinvertebrate communities within two rivers: one with catfish and another one without catfish. Within the invaded river, macroinvertebrates showed little response to catfish presence, whereas predator exclusion appeared to benefit community structure. This suggests that the macroinvertebrate community within the invaded river was adapted to predation impact because of the dominance of resilient taxa, such as Hirudinea, Oligochaeta and Chironomidae that were abundant in the Impact treatment relative to the Control treatment. High macroinvertebrate diversity and richness that was observed in the Control treatment, which excluded the predator, relative to the Impact treatment suggests predator avoidance behaviour within the invaded river. By comparison, within the uninvaded river, catfish introduction into the Impact treatment plots indicated negative effects on macroinvertebrate community that was reflected by decrease in diversity, richness and biomass. A community level impact was also reflected in the multivariate analysis that indicated more variation in macroinvertebrate composition within the Impact treatment relative to the Control in the uninvaded river. Catfish impact within the uninvaded river suggests the dominance of vulnerable taxa, such as odonates that were less abundant in the Impact treatment plots after catfish introduction. From a disturbance perspective, this study revealed different macroinvertebrate responses to catfish impact, and suggests that within invaded habitats, macroinvertebrates were less responsive to catfish presence, whereas catfish introduction within uninvaded habitats demonstrated invasion impact that was shown by a decrease in the abundance of vulnerable taxa. The occurrence of non-native sharptooth catfish within many Eastern Cape rivers is a concern because of its predation impact and potential to influence trophic interrelationships, and efforts should be taken to protect uninvaded rivers, and, where possible, eradicate the invader

    Production of enantiomerically pure D-Phenylglycine using Pseudomonas aeruginosa 10145 as biocatalyst

    No full text
    Different bacterial strains were screened to detect nitrilase and/or nitrile hidratase/amidase activities towards benzonitrile, to be used as biocatalyst to produce enantiomerically pure non-proteinogenic amino acids using amino nitriles as starting material. The best biocatalyst found was Pseudomonas aeruginosa 10145, which showed high enzyme activities. Whole cells were used as catalyst for the transformation of 2-phenyl-2-amino-acetonitrile for the corresponding D-phenylglycine. The percentage conversion was followed by chiral HPLC. After 1 hour reaction 18% of 2-phenyl-2-amino-acetonitrile was converted into D-phenylglycine with an enantiomeric excess of over 95%. When an inducer was added to the media, an increase in nitrile hydrolyzing activities was detected, hence leading to total conversion of (R)-2-phenyl-2-amino-acetonitrile to the corresponding amino acid in 30 min reaction. The isolated yield of the target product was 50% and its characterization was performed by polarimetry, chiral HPLC, IR-FT spectroscopy and GC-MS
    corecore