13 research outputs found

    A New Mixed-Backbone Oligonucleotide against Glucosylceramide Synthase Sensitizes Multidrug-Resistant Tumors to Apoptosis

    Get PDF
    Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    Sphingolipids in neuroblastoma: Their role in drug resistance mechanisms

    No full text
    Disseminated neuroblastoma usually calls for chemotherapy as the primary approach for treatment. Treatment failure is often attributable to drug resistance. This involves a variety of cellular mechanisms, including increased drug efflux through expression of ATP-binding cassette transporters (e.g., P-glycoprotein) and the inability of tumor cells to activate or propagate the apoptotic response. In recent years it has become apparent that sphingolipid metabolism and the generation of sphingolipid species, such as ceramide, also play a role in drug resistance. This may involve an autonomous mechanism, related to direct effects of sphingolipids on the apoptotic response, but also a subtle interplay between sphingolipids and ATP-binding cassette transporters. Here, we present an overview of the current understanding of the multiple levels at which sphingolipids function in drug resistance, with an emphasis on sphingolipid function in neuroblastoma and how modulation of sphingolipid metabolism may be used as a novel treatment paradigm

    Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines

    No full text
    The sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in SK-N-AS cells. These two cell lines exhibited higher sphingolipid levels, compared to SK-N-DZ, which had the lowest activity of either ATP-binding cassette transporter protein. SK-N-DZ cells also differed in ganglioside composition with predominant expression of b-series gangliosides. In conclusion, these three neuroblastoma cell lines offer a good model system to study sphingolipid metabolism in relation to ATP-binding cassette transporter protein function. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies

    PDMP sensitizes neuroblastoma to paclitaxel by inducing aberrant cell cycle progression leading to hyperploidy

    No full text
    The sphingolipid ceramide has been recognized as an important mediator in the apoptotic machinery, and its efficient conversion to glucosylceramide has been associated with multidrug resistance. Therefore, inhibitors of glucosylceramide synthase are explored as tools for treatment of cancer. In this study, we used (D,L)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol to sensitize Neuro-2a murine neuroblastoma cells to the microtubule-stabilizing agent paclitaxel. This treatment resulted in a synergistic inhibition of viable cell number increase, which was based on a novel mechanism: (a) After a transient mitotic arrest, cells proceeded through an aberrant cell cycle resulting in hyperploidy. Apoptosis also occurred but to a very limited extent. (b) Hyperploidy was not abrogated by blocking de novo sphingolipid biosynthesis using ISP-1, ruling out involvement of ceramide as a mediator. (c) Cyclin-dependent kinase 1 and 2 activities were synergistically decreased on treatment. In conclusion, instead of inducing apoptosis through ceramide accumulation, (D,L)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol by itself affects cell cycle-related proteins in paclitaxel-arrested Neuro-2a cells resulting in aberrant cell cycle progression leading to hyperploidy
    corecore