96 research outputs found

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    Quantitative metric profiles capture three-dimensional temporospatial architecture to discriminate cellular functional states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles contribute to misdiagnosis.</p> <p>Methods</p> <p>In order to create more complete tissue structure profiles, we adapted our cell-graph method for extracting quantitative features from histopathology images to now capture temporospatial traits of three-dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the <it>nodes </it>and the approximate adjacency of cells are represented with <it>edges</it>. We chose 11 different cell types representing non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins.</p> <p>Results</p> <p>We built cell-graphs from the cellular hydrogel images and computed a large set of features describing the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the discriminative features for our histopathology data from our previous studies.</p> <p>Conclusions</p> <p>Together, these descriptive metrics provide rigorous quantitative representations of image information that other image analysis methods do not. Examining the changes in these five metrics allowed us to easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus improve the detection and diagnosis of disease.</p

    Primary intestinal lymphangiectasia (Waldmann's disease)

    Get PDF
    Primary intestinal lymphangiectasia (PIL) is a rare disorder characterized by dilated intestinal lacteals resulting in lymph leakage into the small bowel lumen and responsible for protein-losing enteropathy leading to lymphopenia, hypoalbuminemia and hypogammaglobulinemia. PIL is generally diagnosed before 3 years of age but may be diagnosed in older patients. Prevalence is unknown. The main symptom is predominantly bilateral lower limb edema. Edema may be moderate to severe with anasarca and includes pleural effusion, pericarditis or chylous ascites. Fatigue, abdominal pain, weight loss, inability to gain weight, moderate diarrhea or fat-soluble vitamin deficiencies due to malabsorption may also be present. In some patients, limb lymphedema is associated with PIL and is difficult to distinguish lymphedema from edema. Exsudative enteropathy is confirmed by the elevated 24-h stool α1-antitrypsin clearance. Etiology remains unknown. Very rare familial cases of PIL have been reported. Diagnosis is confirmed by endoscopic observation of intestinal lymphangiectasia with the corresponding histology of intestinal biopsy specimens. Videocapsule endoscopy may be useful when endoscopic findings are not contributive. Differential diagnosis includes constrictive pericarditis, intestinal lymphoma, Whipple's disease, Crohn's disease, intestinal tuberculosis, sarcoidosis or systemic sclerosis. Several B-cell lymphomas confined to the gastrointestinal tract (stomach, jejunum, midgut, ileum) or with extra-intestinal localizations were reported in PIL patients. A low-fat diet associated with medium-chain triglyceride supplementation is the cornerstone of PIL medical management. The absence of fat in the diet prevents chyle engorgement of the intestinal lymphatic vessels thereby preventing their rupture with its ensuing lymph loss. Medium-chain triglycerides are absorbed directly into the portal venous circulation and avoid lacteal overloading. Other inconsistently effective treatments have been proposed for PIL patients, such as antiplasmin, octreotide or corticosteroids. Surgical small-bowel resection is useful in the rare cases with segmental and localized intestinal lymphangiectasia. The need for dietary control appears to be permanent, because clinical and biochemical findings reappear after low-fat diet withdrawal. PIL outcome may be severe even life-threatening when malignant complications or serous effusion(s) occur

    Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Get PDF
    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al

    Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides

    Get PDF
    Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn=3200 g mol-1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics simulations (MDS), Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (&#62;0.5%) inhibited biofilm formation, demonstrating a significant reduction in both biomass and biofilm height (17.8 vs. 5.5 µm; P &#60;0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of sugar residues, and extracellular (e)DNA (P &#60;0.05) with a corresponding increase in nanoparticle diffusion (P&#60;0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MDS. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections

    Wert der prophylaktischen Gabe von Immunglobulin bei aggressiver Chemotherapie

    No full text
    • …
    corecore