19 research outputs found

    Primary Results From the Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction (UNTOUCHED) Trial

    Get PDF
    BACKGROUND: The subcutaneous (S) implantable cardioverter-defibrillator (ICD) is safe and effective for sudden cardiac death prevention. However, patients in previous S-ICD studies had fewer comorbidities, had less left ventricular dysfunction, and received more inappropriate shocks (IAS) than in typical transvenous ICD trials. The UNTOUCHED trial (Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction) was designed to evaluate the IAS rate in a more typical, contemporary ICD patient population implanted with the S-ICD using standardized programming and enhanced discrimination algorithms. METHODS: Primary prevention patients with left ventricular ejection fraction ≤35% and no pacing indications were included. Generation 2 or 3 S-ICD devices were implanted and programmed with rate-based therapy delivery for rates ≥250 beats per minute and morphology discrimination for rates ≥200 and <250 beats per minute. Patients were followed for 18 months. The primary end point was the IAS-free rate compared with a 91.6% performance goal, derived from the results for the ICD-only patients in the MADIT-RIT study (Multicenter Automatic Defibrillator Implantation Trial-Reduce Inappropriate Therapy). Kaplan-Meier analyses were performed to evaluate event-free rates for IAS, all-cause shock, and complications. Multivariable proportional hazard analysis was performed to determine predictors of end points. RESULTS: S-ICD implant was attempted in 1116 patients, and 1111 patients were included in postimplant follow-up analysis. The cohort had a mean age of 55.8±12.4 years, 25.6% were women, 23.4% were Black, 53.5% had ischemic heart disease, 87.7% had symptomatic heart failure, and the mean left ventricular ejection fraction was 26.4±5.8%. Eighteen-month freedom from IAS was 95.9% (lower confidence limit, 94.8%). Predictors of reduced incidence of IAS were implanting the most recent generation of device, using the 3-incision technique, no history of atrial fibrillation, and ischemic cause. The 18-month all-cause shock-free rate was 90.6% (lower confidence limit, 89.0%), meeting the prespecified performance goal of 85.8%. Conversion success rate for appropriate, discrete episodes was 98.4%. Complication-free rate at 18 months was 92.7%. CONCLUSIONS: This study demonstrates high efficacy and safety with contemporary S-ICD devices and programming despite the relatively high incidence of comorbidities in comparison with earlier S-ICD trials. The inappropriate shock rate (3.1% at 1 year) is the lowest reported for the S-ICD and lower than many transvenous ICD studies using contemporary programming to reduce IAS. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02433379

    Perception of Vibrotactile Cues in Musical Performance

    Get PDF
    We suggest that studies on active touch psychophysics are needed to inform the design of haptic musical interfaces and better understand the relevance of haptic cues in musical performance. Following a review of the previous literature on vibrotactile perception in musical performance, two recent experiments are reported. The first experiment investigated how active finger-pressing forces affect vibration perception, finding significant effects of vibration type and force level on perceptual thresholds. Moreover, the measured thresholds were considerably lower than those reported in the literature, possibly due to the concurrent effect of large (unconstrained) finger contact areas, active pressing forces, and long-duration stimuli. The second experiment assessed the validity of these findings in a real musical context by studying the detection of vibrotactile cues at the keyboard of a grand and an upright piano. Sensitivity to key vibrations in fact not only was highest at the lower octaves and gradually decreased toward higher pitches; it was also significant for stimuli having spectral peaks of acceleration similar to those of the first experiment, i.e., below the standard sensitivity thresholds measured for sinusoidal vibrations under passive touch conditions

    Thresholds for the perception of hand-transmitted vibration: dependence on contact area and contact location

    No full text
    The detection of vibration applied to the glabrous skin of the hand varies with contact conditions. Three experiments have been conducted to relate variations in the perception of hand-transmitted vibration to previously reported properties of tactile channels. The effects of a surround around the area of contact, the size of the area of contact, the location of the area of contact, the contact force, and the hand posture on perception of thresholds were determined for 8–500?Hz vibration. Removal of a surround around a contact area on the fingertip elevated thresholds of the NP II channel (FA I fibres) at frequencies less than 31.5?Hz and reduced thresholds of the Pacinian channel (FA II fibres) at frequencies greater than about 63?Hz. When no surround was present, thresholds reduced systematically as the contact area increased from the fingertip to the whole hand at frequencies from 16 to 125?Hz, although the decrease was not inversely proportional to the increase in contact area. The results are partly explained by spatial summation in the Pacinian channel (FA II fibres) and the involvement of the NP II channel (SA II) with some influence of biodynamic responses and contact pressures. There were regional differences in sensitivity over the hand within the NP I channel but not within the Pacinian channel: the NP I thresholds (less than 31.5?Hz) decreased from proximal to distal regions of the hand, whereas the Pacinian thresholds (125?Hz) were independent of contact location over the hand

    Independent responses of Pacinian and non-Pacinian systems with hand-transmitted vibration detected from masked thresholds

    No full text
    This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125 Hz sinusoidal for 600 ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16 Hz or 125 Hz for 3000 ms, varying in magnitude 0 to 30 dB above threshold). At all frequencies from 16 to 125 Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds

    The distribution, density and three-dimensional histomorphology of Pacinian corpuscles in the foot of the Asian elephant (Elephas maximus) and their potential role in seismic communication

    No full text
    Both Asian (Elephas maximus) and African (Loxodonta africana) elephants produce low-frequency, high-amplitude rumbles that travel well through the ground as seismic waves, and field studies have shown that elephants may utilize these seismic signals as one form of communication. Unique elephant postures observed in field studies suggest that the elephants use their feet to ‘listen’ to these seismic signals, but the exact sensory mechanisms used by the elephant have never been characterized
    corecore