105 research outputs found

    Tracing responsibilities in food production with animals

    Get PDF
    This paper summarises some results of the final report of the research project ‘Systematics of Responsibilities for Animal Welfare in the Livestock Sector’ (2018-2020). The project focused on the question who is fundamentally responsible for the treatment of farm animals. This question is largely and to some extent pointlessly discussed in the public. The study was commissioned by the German Federal Ministry of Agriculture (BMEL). It is based on a systematic examination of the term ‘responsibility’. Responsibility means that agents (who have the necessary means) act accordingly to their value preferences and cause consequences. In this respect, it must be taken into account that animal welfare (as based on altruistic reasoning) is not always given overriding priority in decision-making. This result becomes more plausible when analysing concrete examples of how real decisions were made. The report establishes a characteristic pattern that re-occurs in many discussions on problems in farm animal husbandry: There is an enormous gap between partakers ascribing responsibility to themselves or unto others. The report in contrast uses and extends well established ethical models and principles to create a matrix that makes it possible to say more precisely who is in fact responsible, and why. The report offers a detailed and rather extensive map of possible agents and stakeholders involved in animal husbandry based on the criteria of the matrix. This will lead to a much more distinguished judgement on responsibilities. The project has also developed a database tool in order to locate players in regards to certain characteristics. One result is to filter out those agents who may be called big players in the game at hand. The big food retailers and political bodies are prime candidates. The model can prove why they have indeed an enormous share of responsibility. The role of ‘the consumer’ is in turn to be reconsidered on this basis. The report finally offers an explanation on how responsibility and reliability are interconnected: It is much easier to stick to one’s own responsibilities if other players reliably stick to theirs. In turn, confidence in the system and its elements can be boosted whenever agents evidentially take up their responsibility and do ‘their jobs

    A multi‑suckling system combined with an enriched housing environment during the growing period promotes resilience to various challenges in pigs

    Get PDF
    Little is known about the impact of social and environmental enrichment on improving livestock resilience, i.e. the ability to quickly recover from perturbations. We evaluated the effect of an alternative housing system (AHS) on resilience of pigs, as compared to conventional housing (CONV). The AHS consisted of multi-litter housing during lactation, delayed weaning, extra space allowance and environmental enrichment at all times. We assessed recovery to a 2 h-transport challenge, an LPS injection, 2 h-heat stress and a biopsy wound in 96 pigs. Additionally, indicators of long-term “wear and tear” on the body were determined. AHS pigs had better physiological recoveries with quicker returns to baseline in the transport and LPS challenges, showed lower cortisol accumulation in hairs and lower variance in weight gain over the experimental period compared to conventionally-housed (CONV) pigs. They also had higher levels of natural antibodies binding KLH than CONV pigs. Their response to heat stress revealed a different strategy compared to CONV pigs. Taken together, AHS pigs appear to be more resilient and experience less chronic stress. Enhancing welfare by provision of social and environmental enrichment that better meets the behavioural needs of pigs seems to be a promising approach to improve their resilience

    Effects of a Multi-Suckling System Combined With Enriched Housing Post-Weaning on Response and Cognitive Resilience to Isolation

    Get PDF
    Improving welfare is still a critical issue in pig husbandry. Upgrades of the housing environment seem to be a promising solution to optimise resilience as a whole, and therefore improve animal welfare. The objective of this study was to evaluate the effect of an alternative housing system to enhance cognitive resilience and also to promote the pigs' welfare. A total of 96 piglets from two contrasted housing systems [alternative housing system (AHS) vs. conventional system (CONV)] was used. The major upgrades of the alternative system were multi-litter housing during lactation, delayed weaning, extra space allowance, and environmental enrichment from birth onwards. To estimate welfare, weight, and feed intake (as a general indicator of performances), the tear staining area (as a chronic stress indicator), behavioural postures, heart rate traits, and saliva cortisol concentration were measured over a 21 h-isolation. To assess cognitive resilience, the pigs were subjected to a maze with a social reward both before and after the isolation challenge and indicators of cognitive abilities were followed. The AHS pigs showed lower cortisol levels and tear staining area before the challenge, demonstrating overall better welfare due to the alternative housing conditions. During the challenge, AHS pigs had a lower heart rate, higher heart rate variability, and higher vagal activity than the CONV pigs, which might indicate a reduced sensitivity to the stressor. AHS pigs appeared to have a better long-term memory tested in a maze. Providing social and environmental enrichments, that fit the satisfaction of the essential needs of the pigs better, appears to be beneficial for pig welfare as a whole. Its effects on cognitive resilience still need to be proven

    Estimation of Resilience Parameters Following LPS Injection Based on Activity Measured With Computer Vision

    Get PDF
    Resilience could be referred to as the animal’s ability to successfully adapt to a challenge. This is typically displayed by a quick return to initial metabolic or activity levels and behaviors. Pigs have distinct diurnal activity patterns. Deviations from these patterns could potentially be utilized to quantify resilience. However, human observations of activity are labor intensive and not feasible in practice on a large scale. In this study, we show the use of a computer vision tracking algorithm to quantify resilience based on activity individual patterns following a lipopolysaccharide (LPS) challenge, which induced a sickness response. We followed 121 individual pigs housed in barren or enriched housing systems, as previous work suggests an impact of housing on resilience, for eight days. The enriched housing consisted of delayed weaning in a group farrowing system and extra space compared with the barren pens and environmental enrichment. Enriched housed pigs were more active pre-injection of LPS, especially during peak activity times, than barren housed pigs (49.4 ± 9.9 vs. 39.1 ± 5.0 meter/hour). Four pigs per pen received an LPS injection and two pigs a saline injection. LPS injected animals were more likely to show a dip in activity than controls (86% vs 17%). Duration and Area Under the Curve (AUC) of the dip were not affected by housing. However, pigs with the same AUC could have a long and shallow dip or a steep and short dip. Therefore the AUC:duration ratio was calculated, and enriched housed pigs had a higher AUC:duration ratio compared to barren housed pigs (9244.1 ± 5429.8 vs 5919.6 ± 4566.1). Enriched housed pigs might therefore have a different strategy to cope with an LPS sickness challenge. However, more research on this strategy and the use of activity to quantify resilience and its relationship to physiological parameters is therefore needed

    Feeding live Black Soldier Fly larvae (Hermetia illucens) to laying hens: effects on feed consumption, hen health, hen behaviour and egg quality

    Get PDF
    The use of insects in animal feed has the potential to reduce the demand for soybean production and reduce the deforestation and loss of natural resources. In particular, the black soldier fly (BSF, Hermetia illucens) larvae have received attention due to their ability to convert organic waste into high-value biomass. Several studies have investigated the effects of providing BSF larvae to both broilers and laying hens. However, knowledge gaps regarding hens’ voluntary intake of live larvae and the effects of larvae consumption on egg production still remain. Therefore, the aim of the present study was to determine the effects of the consumption of 4 different amounts of live BSF larvae on laying hen feed consumption, hen health and fearfulness, and egg production and quality. To this end, 40 Bovans White laying hens were housed individually and provided with 0, 10, 20% or ad libitum daily portions of live larvae from 18 to 30 wk of age. The larvae consumption and concentrate consumption, hen weight, egg production, and egg quality were monitored. Overall, differences were found between the hens given ad libitum access to larvae compared to the other treatments. Ad libitum hens, consumed 163 ± 41 g larvae/hen/day, consumed less concentrate (P = 0.03) and gained more weight (P = 0.0002) than all other treatments. They also had an overall higher consumption of protein, fat and energy (P 0.05). There was also no effect on hen behavior toward a novel object or in an open field test. This study is the first to provide different amounts of live BSF larvae, including an ad libitum portion to laying hens. The 20% diet could promote sustainability in the egg industry and be economically advantageous if BSF larvae can be bought in bulk for less than 40% of the cost of the concentrate

    Impact of Enrichment and Repeated Mixing on Resilience in Pigs

    Get PDF
    Resilience, the capacity of animals to be minimally affected by a disturbance or to rapidly bounce back to the state before the challenge, may be improved by enrichment, but negatively impacted by a high allostatic load from stressful management procedures in pigs. We investigated the combined effects of diverging environmental conditions from weaning and repeated mixing to create high allostatic load on resilience of pigs. Pigs were either exposed to barren housing conditions (B) from weaning onwards or provided with sawdust, extra toys, regular access to a “play arena” and daily positive human contact (E). Half of the pigs were exposed to repeated mixing (RM) and the other half to one mixing only at weaning (minimal mixing, MM). To assess their resilience, the response to and recovery from a lipopolysaccharide (LPS) sickness challenge and a Frustration challenge were studied. In addition, potential long-term resilience indicators, i.e. natural antibodies, hair cortisol and growth were measured. Some indications of more favorable responses to the challenges in E pigs were found, such as lower serum reactive oxygen metabolite (dROM) concentrations and a smaller area under the curve of dROM after LPS injection. In the Frustration challenge, E pigs showed less standing alert, escape behaviors and other negative behaviors, a tendency for a smaller area under the curve of salivary cortisol and a lower plasma cortisol level at 1 h after the challenge. Aggression did not decrease over mixings in RM pigs and was higher in B pigs than in E pigs. Repeated mixing did not seem to reduce resilience. Contrary to expectations, RM pigs showed a higher relative growth than MM pigs during the experiment, especially in the week of the challenges. Barren RM pigs showed a lower plasma cortisol concentration than barren MM pigs after the LPS challenge, which may suggest that those RM pigs responded less detrimentally than MM pigs. Enriched RM pigs showed a higher level of IgM antibodies binding keyhole limpet hemocyanin (KLH) than enriched MM and barren RM pigs, and RM pigs showed a sharper decline in IgG antibodies binding Bovine Serum Albumin (PC-BSA) over time than MM pigs. Hair cortisol concentrations were not affected by enrichment or mixing. To conclude, enrichment did not enhance the speed of recovery from challenges in pigs, although there were indications of reduced stress. Repeated as opposed to single mixing did not seem to aggravate the negative effects of barren housing on resilience and for some parameters even seemed to reduce the negative effects of barren housing

    Early locomotor activity in broilers and the relationship with body weight gain

    Get PDF
    Fast-growing broilers are relatively inactive and this is thought to be a result of selection for high growth rates. This reduced activity level is considered a major cause of leg weakness and associated leg health problems. Increased activity, especially early in life, is suggested to have positive effects on leg health, but the relationship between early activity and growth is unclear. A clearer understanding of the relationship between activity early in life and body weight gain could help determine how selecting on increased early activity could affect body weight gain in broilers. Here, a radio frequency identification (RFID) tracking system was implemented to record daily individual broiler activity throughout life, in 5 production rounds. As mean activity levels alone do not capture the variation in activity over time, multiple (dynamic) descriptors of activity were determined based on the individual birds’ daily distances moved, focusing on the period from 0 to 15 days old. The mean, skewness, root mean square error (RMSE), autocorrelation, and entropy of (deviations in) activity were determined at the individual level, as well as the average daily gain (ADG). Relationships between activity descriptors and ADG were determined for 318 birds. Both when combining the data from the different production rounds and when taking production round and start weight into account, a negative relationship between ADG and RMSE was observed, indicating that birds that were more variable in their activity levels had a lower ADG. However, the activity descriptors, in combination with recording round and start weight, explained only a small part (8%) of the variation in ADG. Therefore, it is recommended for future research to also record other factors affecting ADG (e.g., type of feed provided and feed intake) and to model growth curves. Overall, this study suggests that increasing early activity does not necessarily negatively affect body weight gain. This could contribute to improved broiler health and welfare if selecting for increased activity has the expected positive effects on leg health

    How much is too much? Feeding live black soldier fly larvae to laying hens

    Get PDF
    The use of insects in animal feed has the potential to reduce the demand for soybean productionand reduce the deforestation and loss of natural resources. In particular, black soldier fl y (BSF,Hermetia illucens) larvae have received attention due to their ability to convert organic wasteinto high-value biomass. Several studies have investigated the effects of providing BSF larvaeto both broilers and laying hens. However, knowledge gaps regarding hens’ voluntary intakeof live larvae and the effects of larvae consumption on egg production still remain. Therefore,the aim of the present study was to determine the effects of the provision of four differentamounts of live BSF larvae on laying hen feed consumption, hen health and fearfulness, andegg production and quality. To this end, 40 Bovans White laying hens were housed individuallyand provided with 0%, 10%, 20% or ad libitum daily portions of live larvae (relative toexpected dry matter intake) plus a complementary concentrated pelleted feed from 18 to 30weeks of age. Larvae consumption and concentrate consumption, hen weight, egg productionand egg quality were monitored. Overall, differences were found between the hens given adlibitum access to larvae compared to the other treatments. Ad libitum hens, consumed 163± 41 g larvae/hen/day, consumed less concentrates (P = 0.03) and gained more weight (P =0.0002) than all other treatments. They also had an overall higher consumption of protein,fat and energy (P 0.05). Furthermore, therewas no effect on hen behaviour towards a novel object or in an open fi eld test. This studyshows that ad libitum feeding of live BSF larvae had no strong effects on egg production oregg quality, but did reduce feed consumption and increased hen weight, which can have healthconsequences in the long term. Nevertheless, including BSF larvae in the diet of hens couldbe an interesting option for the future

    Seeing is caring – automated assessment of resource use of broilers with computer vision techniques

    Get PDF
    Routine monitoring of broiler chickens provides insights in the welfare status of a flock, helps to guarantee minimum defined levels of animal welfare and assists farmers in taking remedial measures at an early stage. Computer vision techniques offer exciting potential for routine and automated assessment of broiler welfare, providing an objective and biosecure alternative to the current more subjective and time-consuming methods. However, the current state-of-the-art computer vision solutions for assessing broiler welfare are not sufficient to allow the transition to fully automated monitoring in a commercial environment. Therefore, the aim of this study was to investigate the potential of computer vision algorithms for detection and resource use monitoring of broilers housed in both experimental and commercial settings, while also assessing the potential for scalability and resource-efficient implementation of such solutions. This study used a combination of detection and resource use monitoring methods, where broilers were first detected using Mask R-CNN and were then assigned to a specific resource zone using zone-based classifiers. Three detection models were proposed using different annotation datasets: model A with annotated broilers from a research facility, model B with annotated broilers from a commercial farm, and model A+B where annotations from both environments were combined. The algorithms developed for individual broiler detection performed well for both the research facility (model A, F1 score > 0.99) and commercial farm (model A+B, F1 score > 0.83) test data with an intersection over union of 0.75. The subsequent monitoring of resource use at the commercial farm using model A+B for broiler detection, also performed very well for the feeders, bale and perch (F1 score > 0.93), but not for the drinkers (F1 score = 0.28), which was likely caused by our evaluation method. Thus, the algorithms used in this study are a first step to measure resource use automatically in commercial application and allow detection of a large number of individual animals in a non-invasive manner. From location data of every frame, resource use can be calculated. Ultimately, the broiler detection and resource use monitoring might further be used to assess broiler welfare
    • 

    corecore