52 research outputs found

    Genomic analysis uncovers prognostic and immunogenic characteristics of ferroptosis for clear cell renal cell carcinoma

    Get PDF
    In this study, the characteristic patterns of ferroptosis in clear cell renal cell carcinoma (ccRCC) were systematically investigated with the interactions between ferroptosis and the tumor microenvironment (TME). On the mRNA expression profiles of 57 ferroptosis-related genes (FRGs), three ferroptosis patterns were constructed, with distinct prognosis and immune cell infiltrations (especially T cells and dendritic cells). The high ferroptosis scores were characterized by poorer prognosis, increased T cell infiltration, higher immune and stromal scores, elevated tumor mutation burden, and enhanced response to anti-CTLA4 immunotherapy. Meanwhile, the low ferroptosis scores were distinctly associated with enhanced tumor purity and amino acid and fatty acid metabolism pathways. Following validation, the ferroptosis score was an independent and effective prognostic factor. Collectively, ferroptosis could be involved in the diverse and complex TME. Evaluation of the ferroptosis patterns may heighten the comprehension about immune infiltrations in the TME, assisting oncologists to generate individualized immunotherapeutic strategies

    Phosphate glass fibers facilitate proliferation and osteogenesis through Runx2 transcription in murine osteoblastic cells

    Get PDF
    Cell-material interactions and compatibility are important aspects of bioactive materials for bone tissue engineering. Phosphate glass fiber (PGF) is an attractive inorganic filler with fibrous structure and tunable composition, which has been widely investigated as a bioactive filler for bone repair applications. However, the interaction of osteoblasts with PGFs has not been widely investigated to elucidate the osteogenic mechanism of PGFs. In this study, different concentrations of short PGFs with interlaced oriented topography were co-cultured with MC3T3-E1 cells for different periods, and the synergistic effects of fiber topography and ionic product of PGFs on osteoblast responses including cell adhesion, spreading, proliferation and osteogenic differentiation were investigated. It was found that osteoblasts were more prone to adhere on PGFs through vinculin protein, leading to enhanced cell proliferation with polygonal cell shape and spreading cellular actin filaments. In addition, osteoblasts incubated on PGF meshes showed enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and increased expression of osteogenesis-related marker genes, which could be attributed to the Wnt/β-catenin/Runx2 signaling pathway. This study elucidated the possible mechanism of PGF on triggering specific osteoblast behavior, which would be highly beneficial for designing PGF-based bone graft substitutes with excellent osteogenic functions

    A potential therapeutic drug for osteoporosis: prospect for osteogenic LncRNAs

    Get PDF
    Long non-coding RNAs (LncRNAs) play essential roles in multiple physiological processes including bone formation. Investigators have revealed that LncRNAs regulated bone formation through various signaling pathways and micro RNAs (miRNAs). However, several problems exist in current research studies on osteogenic LncRNAs, including sophisticated techniques, high cost for in vivo experiment, as well as low homology of LncRNAs between animal model and human, which hindered translational medicine research. Moreover, compared with gene editing, LncRNAs would only lead to inhibition of target genes rather than completely knocking them out. As the studies on osteogenic LncRNA gradually proceed, some of these problems have turned osteogenic LncRNA research studies into slump. This review described some new techniques and innovative ideas to address these problems. Although investigations on osteogenic LncRNAs still have obtacles to overcome, LncRNA will work as a promising therapeutic drug for osteoporosis in the near future

    Mammalian Plakins, Giant Cytolinkers: Versatile Biological Functions and Roles in Cancer

    No full text
    Cancer is a highly lethal disease that is characterized by aberrant cell proliferation, migration, and adhesion, which are closely related to the dynamic changes of cytoskeletons and cytoskeletal-adhesion. These will further result in cell invasion and metastasis. Plakins are a family of giant cytolinkers that connect cytoskeletal elements with each other and to junctional complexes. With various isoforms composed of different domain structures, mammalian plakins are broadly expressed in numerous tissues. They play critical roles in many cellular processes, including cell proliferation, migration, adhesion, and signaling transduction. As these cellular processes are key steps in cancer development, mammalian plakins have in recent years attracted more and more attention for their potential roles in cancer. Current evidence shows the importance of mammalian plakins in various human cancers and demonstrates mammalian plakins as potential biomarkers for cancer. Here, we introduce the basic characteristics of mammalian plakins, review the recent advances in understanding their biological functions, and highlight their roles in human cancers, based on studies performed by us and others. This will provide researchers with a comprehensive understanding of mammalian plakins, new insights into the development of cancer, and novel targets for cancer diagnosis and therapy

    Role of Biomolecules in Osteoclasts and Their Therapeutic Potential for Osteoporosis

    No full text
    Osteoclasts (OCs) are important cells that are involved in the regulation of bone metabolism and are mainly responsible for coordinating bone resorption with bone formation to regulate bone remodeling. The imbalance between bone resorption and formation significantly affects bone metabolism. When the activity of osteoclasts exceeds the osteoblasts, it results in a condition called osteoporosis, which is characterized by reduced bone microarchitecture, decreased bone mass, and increased occurrences of fracture. Molecules, including transcription factors, proteins, hormones, nucleic acids, such as non-coding RNAs, play an important role in osteoclast proliferation, differentiation, and function. In this review, we have highlighted the role of these molecules in osteoclasts regulation and osteoporosis. The developed therapeutics targeting these molecules for the treatment of osteoporosis in recent years have also been discussed with challenges faced in clinical application

    Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment

    No full text
    Osteoporosis is a progressive skeletal disease characterized by decreased bone mass and degraded bone microstructure, which leads to increased bone fragility and risks of bone fracture. Osteoporosis is generally age related and has become a major disease of the world. Uncovering the molecular mechanisms underlying osteoporosis and developing effective prevention and therapy methods has great significance for human health. Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts, adipocytes, or chondrocytes, and have become the favorite source of cell-based therapy. Evidence shows that during osteoporosis, a shift of the cell differentiation of MSCs to adipocytes rather than osteoblasts partly contributes to osteoporosis. Thus, uncovering the molecular mechanisms of the osteoblast or adipocyte differentiation of MSCs will provide more understanding of MSCs and perhaps new methods of osteoporosis treatment. The MSCs have been applied to both preclinical and clinical studies in osteoporosis treatment. Here, we review the recent advances in understanding the molecular mechanisms regulating osteoblast differentiation and adipocyte differentiation of MSCs and highlight the therapeutic application studies of MSCs in osteoporosis treatment. This will provide researchers with new insights into the development and treatment of osteoporosis

    Mechanosensitive miRNAs and Bone Formation

    No full text
    Mechanical stimuli are required for the maintenance of skeletal integrity and bone mass. An increasing amount of evidence indicates that multiple regulators (e.g., hormone, cytoskeleton proteins and signaling pathways) are involved in the mechanical stimuli modulating the activities of osteogenic cells and the process of bone formation. Significantly, recent studies have showed that several microRNAs (miRNAs) were sensitive to various mechanical stimuli and played a crucial role in osteogenic differentiation and bone formation. However, the functional roles and further mechanisms of mechanosensitive miRNAs in bone formation are not yet completely understood. This review highlights the roles of mechanosensitive miRNAs in osteogenic differentiation and bone formation and underlines their potential therapeutic application for bone loss induced by the altering of mechanical stimuli
    corecore