19 research outputs found

    Excited state g-functions from the Truncated Conformal Space

    Get PDF
    In this paper we consider excited state g-functions, that is, overlaps between boundary states and excited states in boundary conformal field theory. We find a new method to calculate these overlaps numerically using a variation of the truncated conformal space approach. We apply this method to the Lee-Yang model for which the unique boundary perturbation is integrable and for which the TBA system describing the boundary overlaps is known. Using the truncated conformal space approach we obtain numerical results for the ground state and the first three excited states which are in excellent agreement with the TBA results. As a special case we can calculate the standard g-function which is the overlap with the ground state and find that our new method is considerably more accurate than the original method employed by Dorey et al.Comment: 21 pages, 6 figure

    Quantum Sine(h)-Gordon Model and Classical Integrable Equations

    Full text link
    We study a family of classical solutions of modified sinh-Gordon equation, $\partial_z\partial_{{\bar z}} \eta-\re^{2\eta}+p(z)\,p({\bar z})\ \re^{-2\eta}=0with with p(z)=z^{2\alpha}-s^{2\alpha}.Weshowthatcertainconnectioncoefficientsforsolutionsoftheassociatedlinearproblemcoincidewiththe. We show that certain connection coefficients for solutions of the associated linear problem coincide with the Q−functionofthequantumsine−Gordon-function of the quantum sine-Gordon (\alpha>0)orsinh−Gordon or sinh-Gordon (\alpha<-1)$ models.Comment: 35 pages, 3 figure

    BPS States in Omega Background and Integrability

    Full text link
    We reconsider string and domain wall central charges in N=2 supersymmetric gauge theories in four dimensions in presence of the Omega background in the Nekrasov-Shatashvili (NS) limit. Existence of these charges entails presence of the corresponding topological defects in the theory - vortices and domain walls. In spirit of the 4d/2d duality we discuss the worldsheet low energy effective theory living on the BPS vortex in N=2 Supersymmetric Quantum Chromodynamics (SQCD). We discuss some aspects of the brane realization of the dualities between various quantum integrable models. A chain of such dualities enables us to check the AGT correspondence in the NS limit.Comment: 48 pages, 10 figures, minor changes, references added, typos correcte

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic
    corecore