9 research outputs found

    The correlations between optical variability and physical parameters of quasars in SDSS Stripe 82

    Full text link
    We investigate the optical variability of 7658 quasars from SDSS Stripe 82. Taking advantage of a larger sample and relatively more data points for each quasar, we estimate variability amplitudes and divide the sample into small bins of redshift, rest-frame wavelength, black hole mass, Eddington ratio and bolometric luminosity respectively, to investigate the relationships between variability and these parameters. An anti-correlation between variability and rest-frame wavelength is found. The variability amplitude of radio-quiet quasars shows almost no cosmological evolution, but that of radio-loud ones may weakly anti-correlate with redshift. In addition, variability increases as either luminosity or Eddington ratio decreases. However, the relationship between variability and black hole mass is uncertain; it is negative when the influence of Eddington ratio is excluded, but positive when the influence of luminosity is excluded. The intrinsic distribution of variability amplitudes for radio-loud and radio-quiet quasars are different. Both radio-loud and radio-quiet quasars exhibit a bluer-when-brighter chromatism. Assuming that quasar variability is caused by variations of accretion rate, the Shakura-Sunyaev disk model can reproduce the tendencies of observed correlations between variability and rest-frame wavelength, luminosity as well as Eddington ratio, supporting that changes of accretion rate plays an important role in producing the observed optical variability. However, the predicted positive correlation between variability and black hole mass seems to be inconsistent with the observed negative correlation between them in small bins of Eddington ratio, which suggests that other physical mechanisms may still need to be considered in modifying the simple accretion disk model.Comment: 51 pages, 28 figures, 2 tables, ApJ accepte

    Spectral variability of quasars from multi-epoch photometric data in the Sloan Digital Sky Survey Stripe 82

    Full text link
    We present a new approach to analysing the dependence of quasar variability on rest-frame wavelengths. We exploited the spectral archive of the Sloan Digital Sky Survey (SDSS) to create a sample of more than 9000 quasars in the Stripe 82. The quasar catalogue was matched with the Light Motion Curve Catalogue for SDSS Stripe 82 and individual first-order structure functions were computed. The structure functions are used to create a variability indicator that is related to the same intrinsic timescales for all quasars (1 to 2 yr in the rest frame). We study the variability ratios for adjacent SDSS filter bands as a function of redshift. While variability is almost always stronger in the bluer passband compared to the redder, the variability ratio depends on whether strong emission lines contribute to either one band or the other. The variability ratio-redshift relations resemble the corresponding colour index-redshift relations. From the comparison with Monte Carlo simulations of variable quasar spectra we find that the observed variability ratio-redshift relations are closely fitted assuming that (a) the r.m.s. fluctuation of the quasar continuum follows a power law-dependence on the intrinsic wavelength with an exponent -2 (i.e., bluer when brighter) and (b) the variability of the emission line flux is only about 10% of that of the underlying continuum. These results, based upon the photometry of more than 8000 quasars, confirm the previous findings by Wilhite et al. (2005) from 315 quasars with repeated SDSS spectroscopy. Finally, we find that quasars with unusual spectra and weak emission lines tend to have less variability than conventional quasars. This trend is opposite to what is expected from the dilution effect of variability due to line emission and may be indicative of high Eddington ratios in these unconventinal quasars.Comment: Accepted for publication in Astronomy and Astrophysic

    Hypernovae and Other Black-Hole-Forming Supernovae

    Full text link
    During the last few years, a number of exceptional core-collapse supernovae (SNe) have been discovered. Their kinetic energy of the explosions are larger by more than an order of magnitude than the typical values for this type of SNe, so that these SNe have been called `Hypernovae'. We first describe how the basic properties of hypernovae can be derived from observations and modeling. These hypernovae seem to come from rather massive stars, thus forming black holes. On the other hand, there are some examples of massive SNe with only a small kinetic energy. We suggest that stars with non-rotating black holes are likely to collapse "quietly" ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). We present distinct nucleosynthesis features of these two types of "black-hole-forming" supernovae. Hypernova nucleosynthesis is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the most Fe deficient star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and Space Science; Kluwer) ed. C. L. Fryer (2003

    On the Origin of S0 Galaxies

    Full text link
    I will review the basic properties of S0 galaxies in the local Universe in relation to both elliptical and spiral galaxies, their neighbours on the Hubble sequence, and also in relation to dwarf spheroidal (dSph) galaxies. This will include colours, luminosities, spectral features, information about the age and metallicity composition of their stellar populations and globular clusters, about their ISM content, as well as kinematic signatures and their implications for central black hole masses and past interaction events, and the number ratios of S0s to other galaxy types in relation to environmental galaxy density. I will point out some caveats as to their morphological discrimination against other classes of galaxies, discuss the role of dust and the wavelength dependence of bulge/disk light ratios. These effects are of importance for investigations into the redshift evolution of S0 galaxies -- both as individual objects and as a population. The various formation and transformation scenarios for S0 and dSph galaxies will be presented and confronted with the available observations.Comment: Invited Review, 18 pages, ``BARS 2004'' Conference, South Africa, June 2004, eds.: K. C. Freeman, D. L. Block, I. Puerari, R. Groess, Kluwer, in pres

    Stellar populations in the nuclear regions of nearby radio galaxies

    No full text
    We present optical spectra of the nuclei of seven luminous (P178MHz ≳ 1025 W Hz-1 Sr-1 ) nearby (z < 0.08) radio galaxies, which mostly correspond to the FR II class. In two cases, Hydra A and 3C 285, the Balmer and λ4000-Å break indices constrain the spectral types and luminosity classes of the stars involved, revealing that the blue spectra are dominated by blue supergiant and/or giant stars. The ages derived for the last burst of star formation in Hydra A are between 7 and 40Myr, and in 3C 285 about 10 Myr. The rest of the narrow-line radio galaxies (four) have a λ4000-Å break and metallic indices consistent with those of elliptical galaxies. The only broad-line radio galaxy in our sample, 3C 382, has a strong featureless blue continuum and broad emission lines that dilute the underlying blue stellar spectra. We are able to detect the Ca II triplet in absorption in the seven objects, with good quality data for only four of them. The strengths of the absorptions are similar to those found in normal elliptical galaxies, but these values are consistent both with stellar populations of roughly similar ages (as derived from the Balmer absorption and break strengths) and with mixed young+old populations

    Ages and metallicities of Hickson compact group galaxies

    No full text
    Hickson compact groups (HCGs) constitute an interesting extreme in the range of environments in which galaxies are located, as the space density of galaxies in these small groups are otherwise only found in the centres of much larger clusters. The work presented here uses Lick indices to make a comparison of ages and chemical compositions of galaxies in HCGs with those in other environments (clusters, loose groups and the field). The metallicity and relative abundance of 'alpha-elements' show strong correlations with galaxy age and central velocity dispersion, with similar trends found in all environments. However, we show that the previously reported correlation between a-element abundance ratios and velocity dispersion disappears when a full account is taken of the abundance ratio pattern in the calibration stars. This correlation is thus found to be an artefact of incomplete calibration to the Lick system.Variations are seen in the ranges and average values of age, metallicity and alpha-element abundance ratios for galaxies in different environments. Age distributions support the hierarchical formation prediction that field galaxies are on average younger than their cluster counterparts. However, the ages of HCG galaxies are shown to be more similar to those of cluster galaxies than those in the field, contrary to the expectations of current hierarchical models. A trend for lower velocity dispersion galaxies to be younger was also seen. This is again inconsistent with hierarchical collapse models, but is qualitatively consistent with the latest N-body smoothed particle hydrodynamics models based on monolithic collapse in which star formation continues for many Gyr in low-mass haloes
    corecore