27 research outputs found

    Effectiveness of flow obstructions in enhancing electro-osmotic flow

    Get PDF
    In this paper the influence of obstructions on micro-channel electroosmotic flow is investigated for the first time. To carry out such a study, regular obstructions are introduced into micro-channels and flow rates are numerically calculated. The effect of channel width on flow rates is analysed on both free and obstructed channels. The solid material considered for channel walls and obstructions is silicon and the electrolyte is de-ionised water. The parameters studied include channel width, obstruction size and effective porosity of the channel. The effective porosity is varied between 0.4 and 0.8 depending on other chosen parameters. The results clearly demonstrate that, under the analysed conditions, introduction of obstructions into channels wider than100 micro meters enhances the flow rate induced by electro-osmosis

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    Heat and mass transfer scale-up issues during freeze-drying, III: Control and characterization of dryer differences via operational qualification tests

    No full text
    The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. “Hot” and “cold” spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of −25°C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scaleup issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals

    Heat and mass transfer scale-up issues during freeze-drying, I: Atypical radiation and the edge vial effect

    No full text
    The aim of this study is to determine whether radiation heat transfer is responsible for the position dependence of heat transfer known as the edge vial effect. Freeze drying was performed on a laboratory-scale freeze dryer using pure water with vials that were fully stoppered but had precision cut metal tubes inserted in them to ensure uniformity in resistance to vapor flow. Sublimation rates were determined gravimetrically. Vials were sputter-coated with gold and placed at selected positions on the shelf. Average sublimation rates were determined for vials located at the front, side, and center of an array of vials. Sublimation rates were also determined with and without the use of aluminum foil as a radiation shield. The effect of the guardrail material and its contribution to the edge vial effect by conduction heat transfer was studied by replacing the stainless steel band with a low-thermal conductivity material (styrofoam). The emissivities (Δ) of relevant surfaces were measured using an infrared thermometer. Sublimation rate experiments were also conducted with vials suspended off the shelf to study the role of convection heat transfer. It was found that sublimation rates were significantly higher for vials located in the front compared to vials in the center. Additional radiation shields in the form of aluminum foil on the inside door resulted in a decrease in sublimation rates for the front vials and to a lesser extent, the center vials. There was a significant decrease in sublimation rate for goldcoated vials (Δ≈0.4) placed at the front of an array when compared to that of clear vials (Δ≈0.9). In the case of experiments with vials suspended off the shelf, the heat transfer coefficient was found to be independent of chamber pressure, indicating that pure convection plays no significant role in heat transfer. Higher sublimation rates were observed when the steel band was used instead of Styrofoam while the highest sublimation rates were obtained in the absence of the guardrail, indicating that the metal band can act as a thermal shield but also transmits some heat from the shelf via conduction and radiation. Atypical radiation heat transfer is responsible for higher sublimation rates for vials located at the front and side of an array. However, the guardrail contributes a little to heat transfer by conduction
    corecore