15 research outputs found

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Conserving open natural pollination safeguards Jatropha oil yield and oil quality

    No full text
    The high oil content and suitable fatty acid composition of the seeds are two arguments to promote Jatropha curcas L. as a promising biodiesel crop. For seed yielding crops as J. curcas, it can be expected that successful pollination is a key process affecting oil yield and oil quality. Field experiments were conducted in Zambia to study the effects of different pollination treatments (autonomous autogamy, open natural, open pollen supplemented, self, and cross-pollination) on seed morphology, seed oil content (g), seed oil concentration (%), and oil fatty acid composition of J. curcas in 2- and 5-year-old plantations. For this experiment, 100 inflorescences per plantation were selected. Autonomous autogamy and self-pollination treatments reduced oil yield with 70 and 29 % respectively, compared to open pollination. Cross- and self-pollinations resulted in longer seeds than open pollination but did not affect oil content and concentration. The oil has high unsaturated fatty acid content (80 %) and is composed of nine fatty acids. Pollination treatments had an effect on fatty acid composition of oil from mature trees (5 years old), but had not for 2-year-old trees. The oleic acid content, a determinant fatty acid component for quality biodiesel production was lower for artificial self-pollination (9 % reduction) compared to open pollination. This research demonstrates that overall oil yield and quality are the highest under natural pollination. This shows the importance of safeguarding the quality and effectiveness of open natural pollination. This can be done by enhancing the presence of insects identified as J. curcas pollinators, particularly those pollinators enhancing cross-pollination.SCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore