123 research outputs found

    Paternal effect on genomic activation, clinical pregnancy and live birth rate after ICSI with cryopreserved epididymal versus testicular spermatozoa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study takes an in depth look at embryonic development, implantation, pregnancy and live birth rates with frozen epididymal and testicular sperm from obstructed (OA) and non-obstructed (NOA) patients.</p> <p>Methods</p> <p>Paternal effect of sperm source on zygote formation, embryonic cleavage, and genomic activation were examined. Additional outcome parameters monitored were clinical pregnancy rate (CPR), implantation rate (IR) and live birth rate.</p> <p>Results</p> <p>In this report, we retrospectively analyzed 156 ICSI cycles using cryopreserved epididymal sperm (ES; n = 77) or testicular sperm (TESE; n = 79). The developmental potential of embryos did not appear to be influenced by the type of surgically retrieved sperm. The average number of blastomeres observed on Day 3 was not different among different groups; 7.5 +/- 1.7 (ES), 7.6 +/- 2.1 (TESE-OA) and 6.5 +/- 2.3 (TESE-NOA). Compaction and blastulation rates, both indicators of paternal genomic activation, were similar in embryos derived from ICSI with ES or TESE from OA as well as NOA men. The only parameter significantly affected in NOA-TESE cases was the fertilization rate. CPR and IR with cryopreserved TESE (TESE-OA 59%, 34%, and TESE-NOA 37%, 20%) were also not statistically different, from that achieved with cryopreserved ES (61% and 39%). Live birth rates also appeared to be independent of sperm type. The 87 clinical pregnancies established using cryopreserved TESE and ES, resulted in the birth of 115 healthy infants. No congenital anomalies were noted.</p> <p>Conclusion</p> <p>Zygotic activation seems to be independent of sperm origin and type of azoospermia.</p

    Age-Associated Metabolic and Morphologic Changes in Mitochondria of Individual Mouse and Hamster Oocytes

    Get PDF
    Background: In human oocytes, as in other mammalian ova, there is a significant variation in the pregnancy potential, with approximately 20% of oocyte-sperm meetings resulting in pregnancies. This frequency of successful fertilization decreases as the oocytes age. This low proportion of fruitful couplings appears to be influenced by changes in mitochondrial structure and function. In this study, we have examined mitochondrial biogenesis in both hamster (Mesocricetus auratus) and mouse (Mus musculus) ova as models for understanding the effects of aging on mitochondrial structure and energy production within the mammalian oocyte. Methodology/Principal Findings: Individual metaphase II oocytes from a total of 25 young and old mice and hamsters were collected from ovarian follicles after hormone stimulation and prepared for biochemical or structural analysis. Adenosine triphosphate levels and mitochondrial DNA number were determined within individual oocytes from young and old animals. In aged hamsters, oocyte adenosine triphosphate levels and mitochondrial DNA molecules were reduced 35.4% and 51.8%, respectively. Reductions of 38.4% and 44% in adenosine triphosphate and mitochondrial genomes, respectively, were also seen in aged mouse oocytes. Transmission electron microscopic (TEM) analysis showed that aged rodent oocytes had significant alterations in mitochondrial and cytoplasmic lamellae structure. Conclusions/Significance: In both mice and hamsters, decreased adenosine triphosphate in aged oocytes is correlated with a similar decrease in mtDNA molecules and number of mitochondria. Mitochondria in mice and hamsters undergo significant morphological change with aging including mitochondrial vacuolization, cristae alterations, and changes in cytoplasmic lamellae

    Chronic arthritis in children and adolescents in two Indian health service user populations

    Get PDF
    BACKGROUND: High prevalence rates for rheumatoid arthritis, spondyloarthopathies, and systemic lupus erythematosus have been described in American Indian and Alaskan Native adults. The impact of these diseases on American Indian children has not been investigated. METHODS: We used International Classification of Diseases-9 (ICD-9) codes to search two Indian Health Service (IHS) patient registration databases over the years 1998–2000, searching for individuals 19 years of age or younger with specific ICD-9-specified diagnoses. Crude estimates for disease prevalence were made based on the number of individuals identified with these diagnoses within the database. RESULTS: Rheumatoid arthritis (RA) / juvenile rheumatoid arthritis (JRA) was the most frequent diagnosis given. The prevalence rate for JRA in the Oklahoma City Area was estimated as 53 per 100,000 individuals at risk, while in the Billings Area, the estimated prevalence was nearly twice that, at 115 per 100,000. These rates are considerably higher than those reported in the most recent European studies. CONCLUSION: Chronic arthritis in childhood represents an important, though unrecognized, chronic health challenge within the American Indian population living in the United States

    Paternal effects on early embryogenesis

    Get PDF
    Historically, less attention has been paid to paternal effects on early embryogenesis than maternal effects. However, it is now apparent that certain male factor infertility phenotypes are associated with increased DNA fragmentation and/or chromosome aneuploidies that may compromise early embryonic development. In addition, there is a growing body of evidence that the fertilizing sperm has more function than just carrying an intact, haploid genome. The paternally inherited centrosome is essential for normal fertilization, and the success of higher order chromatin packaging may impact embryogenesis. Epigenetic modifications of sperm chromatin may contribute to the reprogramming of the genome, and sperm delivered mRNA has also been hythesized to be necessary for embryogenesis. There is less information about the epigenetic factors affecting embryogenesis than genetic factors, but the epigenetics of gamete and early embryogenesis is a rapidly advancing field

    Raman micro-spectroscopy can be used to investigate the developmental stage of the mouse oocyte

    Get PDF
    In recent years, the uptake of assisted reproductive techniques such as in vitro fertilisation has risen exponentially. However, there is much that is still not fully understood about the biochemical modifications that take place during the development and maturation of the oocyte. As such, it is essential to further the understanding of how oocyte manipulation during these procedures ultimately affects its developmental potential; yet, there are few methods currently available which are capable of providing a quantitative measure of oocyte quality. Raman spectroscopy enables investigation of the global biochemical profile of intact cells without the need for labelling. Here, Raman spectra were acquired from the ooplasm of mouse oocytes at various stages of development, from late pre-antral follicles, collected after in vitro maturation within their ovarian follicles and from unstimulated and stimulated ovulatory cycles. Using a combination of univariate and multivariate statistical methods, it was found that ooplasm lipid content could be used to discriminate between different stages of oocyte development. Furthermore, the spectral profiles of mature oocytes revealed that oocytes which have developed in vitro are protein-deficient when compared to in vivo grown oocytes. Finally, the ratio of two Raman peak intensities, namely 1605:1447 cm21, used as a proxy for the protein-to-lipid ratio of the ooplasm, was shown to be indicative of the oocyte’s quality. Together, results indicate that Raman spectroscopy may present an alternative analytical tool fo

    The elegans of spindle assembly

    Get PDF
    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly
    corecore