160 research outputs found
Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance
Stochastic resonance is a counter-intuitive concept[1,2], ; the addition of
noise to a noisy system induces coherent amplification of its response. First
suggested as a mechanism for the cyclic recurrence of ice ages, stochastic
resonance has been seen in a wide variety of macroscopic physical systems:
bistable ring lasers[3], SQUIDs[4,5], magnetoelastic ribbons[6], and
neurophysiological systems such as the receptors in crickets[7] and
crayfish[8]. Although it is fundamentally important as a mechanism of coherent
signal amplification, stochastic resonance is yet to be observed in nanoscale
systems. Here we report the observation of stochastic resonance in bistable
nanomechanical silicon oscillators, which can play an important role in the
realization of controllable high-speed nanomechanical memory cells. Our
nanomechanical systems were excited into a dynamic bistable state and modulated
in order to induce controllable switching; the addition of white noise showed a
marked amplification of the signal strength. Stochastic resonance in
nanomechanical systems paves the way for exploring macroscopic quantum
coherence and tunneling, and controlling nanoscale quantum systems for their
eventual use as robust quantum logic devices.Comment: 18 pages, 4 figure
Prevention of coronary heart disease in people with severe mental illnesses: a qualitative study of patient and professionals' preferences for care
BACKGROUND: People with severe mental illness (SMI) are at increased risk of developing coronary heart disease (CHD) and there is growing emphasis on the need to monitor their physical health. However, there is little consensus on how services for the primary prevention of CHD should be organised for this patient group. We explored the views of people with SMI and health professionals from primary care and community mental health teams (CMHTs) on how best to provide these services. METHODS: In-depth interviews were conducted with a purposive sample of patients with SMI (n = 31) and staff from primary care (n = 10) and community mental health teams (n = 25) in North Central London. Transcripts of the qualitative interviews were analysed using a 'framework' approach to identify the main themes in opinions regarding various service models. RESULTS: Cardiovascular risk factors in people with SMI were of concern to participants. However, there was some disagreement about the best way to deliver appropriate care. Although staff felt that primary care should take responsibility for risk factor screening and management, patients favoured CHD screening in their CMHT. Problems with both approaches were identified. These included a lack of familiarity in general practice with SMI and antipsychotic side effects and poor communication of physical health issues to the CMHT. Lack of knowledge regarding CHD risk factor screening and difficulties in interpreting screening results and implementing appropriate interventions exist in secondary care. CONCLUSION: Management of physical health care for people with SMI requires complex solutions that cross the primary-secondary care interface. The views expressed by our participants suggest that neither primary nor secondary care services on their own can provide a comprehensive service for all patients. The increased risk of CHD associated with SMI and antipsychotic medications requires flexible solutions with clear lines of responsibility for assessing, communicating and managing CHD risks
Annelid phylogeny and the status of Sipuncula and Echiura
BACKGROUND: Annelida comprises an ancient and ecologically important animal phylum with over 16,500 described species and members are the dominant macrofauna of the deep sea. Traditionally, two major groups are distinguished: Clitellata (including earthworms, leeches) and "Polychaeta" (mostly marine worms). Recent analyses of molecular data suggest that Annelida may include other taxa once considered separate phyla (i.e., Echiura, and Sipuncula) and that Clitellata are derived annelids, thus rendering "Polychaeta" paraphyletic; however, this contradicts classification schemes of annelids developed from recent analyses of morphological characters. Given that deep-level evolutionary relationships of Annelida are poorly understood, we have analyzed comprehensive datasets based on nuclear and mitochondrial genes, and have applied rigorous testing of alternative hypotheses so that we can move towards the robust reconstruction of annelid history needed to interpret animal body plan evolution. RESULTS: Sipuncula, Echiura, Siboglinidae, and Clitellata are all nested within polychaete annelids according to phylogenetic analyses of three nuclear genes (18S rRNA, 28S rRNA, EF1Ξ±; 4552 nucleotide positions analyzed) for 81 taxa, and 11 nuclear and mitochondrial genes for 10 taxa (additional: 12S rRNA, 16S rRNA, ATP8, COX1-3, CYTB, NAD6; 11,454 nucleotide positions analyzed). For the first time, these findings are substantiated using approximately unbiased tests and non-scaled bootstrap probability tests that compare alternative hypotheses. For echiurans, the polychaete group Capitellidae is corroborated as the sister taxon; while the exact placement of Sipuncula within Annelida is still uncertain, our analyses suggest an affiliation with terebellimorphs. Siboglinids are in a clade with other sabellimorphs, and clitellates fall within a polychaete clade with aeolosomatids as their possible sister group. None of our analyses support the major polychaete clades reflected in the current classification scheme of annelids, and hypothesis testing significantly rejects monophyly of Scolecida, Palpata, Canalipalpata, and Aciculata. CONCLUSION: Using multiple genes and explicit hypothesis testing, we show that Echiura, Siboglinidae, and Clitellata are derived annelids with polychaete sister taxa, and that Sipuncula should be included within annelids. The traditional composition of Annelida greatly underestimates the morphological diversity of this group, and inclusion of Sipuncula and Echiura implies that patterns of segmentation within annelids have been evolutionarily labile. Relationships within Annelida based on our analyses of multiple genes challenge the current classification scheme, and some alternative hypotheses are provided
Progestogens to prevent preterm birth in twin pregnancies: an individual participant data meta-analysis of randomized trials
<p>Abstract</p> <p>Background</p> <p>Preterm birth is the principal factor contributing to adverse outcomes in multiple pregnancies. Randomized controlled trials of progestogens to prevent preterm birth in twin pregnancies have shown no clear benefits. However, individual studies have not had sufficient power to evaluate potential benefits in women at particular high risk of early delivery (for example, women with a previous preterm birth or short cervix) or to determine adverse effects for rare outcomes such as intrauterine death.</p> <p>Methods/design</p> <p>We propose an individual participant data meta-analysis of high quality randomized, double-blind, placebo-controlled trials of progestogen treatment in women with a twin pregnancy. The primary outcome will be adverse perinatal outcome (a composite measure of perinatal mortality and significant neonatal morbidity). Missing data will be imputed within each original study, before data of the individual studies are pooled. The effects of 17-hydroxyprogesterone caproate or vaginal progesterone treatment in women with twin pregnancies will be estimated by means of a random effects log-binomial model. Analyses will be adjusted for variables used in stratified randomization as appropriate. Pre-specified subgroup analysis will be performed to explore the effect of progestogen treatment in high-risk groups.</p> <p>Discussion</p> <p>Combining individual patient data from different randomized trials has potential to provide valuable, clinically useful information regarding the benefits and potential harms of progestogens in women with twin pregnancy overall and in relevant subgroups.</p
DRhigh+CD45RAβ-Tregs Potentially Affect the Suppressive Activity of the Total Treg Pool in Renal Transplant Patients
Recent studies show that regulatory T cells (Tregs) play an essential role in tolerance induction after organ transplantation. In order to examine whether there are differences in the composition of the total CD4+CD127low+/βFoxP3+- Treg cell pool between stable transplant patients and patients with biopsy proven rejection (BPR), we compared the percentages and the functional activity of the different Treg cell subsets (DRhigh+CD45RAβ-Tregs, DRlow+CD45RAβ-Tregs, DRβCD45RAβ-Tregs, DRβCD45RA+-Tregs). All parameters were determined during the three different periods of time after transplantation (0β30 days, 31β1,000 days, >1,000 days). Among 156 transplant patients, 37 patients suffered from BPR. The most prominent differences between rejecting and non-rejecting patients were observed regarding the DRhigh+CD45RAβ-Treg cell subset. Our data demonstrate that the suppressive activity of the total Treg pool strongly depends on the presence of these Treg cells. Their percentage within the total Treg pool strongly decreased after transplantation and remained relatively low during the first year after transplantation in all patients. Subsequently, the proportion of this Treg subset increased again in patients who accepted the transplant and reached a value of healthy non-transplanted subjects. By contrast, in patients with acute kidney rejection, the DRhigh+CD45RAβ-Treg subset disappeared excessively, causing a reduction in the suppressive activity of the total Treg pool. Therefore, both the monitoring of its percentage within the total Treg pool and the monitoring of the HLA-DR MFI of the DR+CD45RAβ-Treg subset may be useful tools for the prediction of graft rejection
Suppression of HIV-Specific and Allogeneic T Cell Activation by Human Regulatory T Cells Is Dependent on the Strength of Signals
Regulatory T cells (Tregs) suppress immune responses against both self and non-self antigens. Tregs require activation through the T cell receptor (TCR) and IL-2 to exert their suppressive functions. However, how strength of TCR signals modulate the potency of Treg-mediated suppression of antigen-specific T cell activation remain unclear. We found that both strength of TCR signals and ratios of Tregs to target cells, either through superantigen, allogeneic antigens or HIV-specific peptides, modified the suppressive ability of Tregs. While human Tregs were able to mediate suppression in the presence of only autologous antigen-presenting cells, this was much less efficient as compared to when Tregs were activated by allogeneic dendritic cells. In another physiologically relevant system, we show that the strength of peptide stimulation, high frequency of responder CD8+ T cells or presence of high IL-2 can override the suppression of HIV-specific CD8+ T cells by Tregs. These findings suggest that ratios and TCR activation of human Tregs, are important parameters to overcome robust immune responses to pathogens or allogeneic antigens. Modulating the strength of T cell signals and selective enhancement or depletion of antigen-specific Tregs thus may have implications for designing potent vaccines and regulating immune responses during allogeneic transplantation and chronic infections
Relationship between Regulatory T Cells and Immune Activation in Human Immunodeficiency Virus-Infected Patients Interrupting Antiretroviral Therapy
Persistent immune activation plays a central role in driving Human Immunodeficiency Virus (HIV) disease progression. Whether CD4+CD25+ regulatory T cells (Tregs) are harmful by suppressing HIV-specific immune responses and/or beneficial through a decrease in immune activation remains debatable. We analysed the relationship between proportion and number of regulatory T cells (Tregs) and immune activation in HIV-infected patients interrupting an effective antiretroviral therapy (ART). Twenty-five patients were included in a substudy of a prospective multicenter trial of treatment interruption (TI) (ANRS 116). Proportions and numbers of Tregs and the proportion of activated CD4 and CD8 T cells were assessed at baseline and month 12 (M12) of TI. Specific anti-HIV CD4 and CD8 responses were investigated at baseline and M12. Non parametric univariate analyses and multivariate linear regression models were conducted. At baseline, the proportion of Tregs negatively correlated with the proportion of HLA-DR+CD8+T cells (rβ=ββ0.519). Following TI, the proportion of Tregs increased from 6.3% to 7.2% (pβ=β0.029); absolute numbers of Tregs decreased. The increase in the proportion of HLA-DR+CD38+CD8+T cells was significantly related to the increase in proportion of Tregs (pβ=β0.031). At M12, the proportion of Tregs did not negatively correlate with CD8 T-cell activation. Nevertheless, Tregs retain a suppressive function since depletion of Treg-containing CD4+CD25+ cells led to an increase in lymphoproliferative responses in most patients studied. Our data suggest that Tregs are efficient in controlling residual immune activation in patients with ART-mediated viral suppression. However, the insufficient increase in the proportion and/or the decrease in the absolute number of Tregs result in a failure to control immune activation following TI
Methylated H3K4, a Transcription-Associated Histone Modification, Is Involved in the DNA Damage Response Pathway
Eukaryotic genomes are associated with a number of proteins such as histones that constitute chromatin. Post-translational histone modifications are associated with regulatory aspects executed by chromatin and all transactions on genomic DNA are dependent on them. Thus, it will be relevant to understand how histone modifications affect genome functions. Here we show that the mono ubiquitylation of histone H2B and the tri-methylation of histone H3 on lysine 4 (H3K4me3), both known for their involvement in transcription, are also important for a proper response of budding yeast cells to DNA damaging agents and the passage through S-phase. Cells that cannot methylate H3K4 display a defect in double-strand break (DSB) repair by non-homologous end joining. Furthermore, if such cells incur DNA damage or encounter a stress during replication, they very rapidly lose viability, underscoring the functional importance of the modification. Remarkably, the Set1p methyltransferase as well as the H3K4me3 mark become detectable on a newly created DSB. This recruitment of Set1p to the DSB is dependent on the presence of the RSC complex, arguing for a contribution in the ensuing DNA damage repair process. Taken together, our results demonstrate that Set1p and its substrate H3K4me3, which has been reported to be important for the transcription of active genes, also plays an important role in genome stability of yeast cells. Given the high degree of conservation for the methyltransferase and the histone mark in a broad variety of organisms, these results could have similar implications for genome stability mechanisms in vertebrate and mammalian cells
BRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice
BRIT1 protein (also known as MCPH1) contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1β/β mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1β/β mice and mouse embryonic fibroblasts (MEFs) were hypersensitive to Ξ³-irradiation. BRIT1β/β MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1β/β mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs) were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice
- β¦