48 research outputs found

    Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces

    Get PDF
    Background Most falls in older adults are reported during locomotion and tripping has been identified as a major cause of falls. Challenging environments (e.g., walking on slopes) are potential interventions for maintaining balance and gait skills. The aims of this study were: 1) to investigate whether or not distributions of two important gait variables [minimum toe clearance (MTC) and foot velocity at MTC (VelMTC)] and locomotor control strategies are altered during walking on sloped surfaces, and 2) if altered, are they maintained at two groups (young and elderly female groups). Methods MTC and VelMTC data during walking on a treadmill at sloped surfaces (+3°, 0° and -3°) were analysed for 9 young (Y) and 8 elderly (E) female subjects. Results MTC distributions were found to be positively skewed whereas VelMTC distributions were negatively skewed for both groups on all slopes. Median MTC values increased (Y = 33%, E = 7%) at negative slope but decreased (Y = 25%, E = 15%) while walking on the positive slope surface compared to their MTC values at the flat surface (0°). Analysis of VelMTC distributions also indicated significantly (p < 0.05) lower minimum and 25th percentile (Q1) values in the elderly at all slopes. Conclusion The young displayed a strong positive correlation between MTC median changes and IQR (interquartile range) changes due to walking on both slopes; however, such correlation was weak in the older adults suggesting differences in control strategies being employed to minimize the risk of tripping

    Extraction of bodily features for gait recognition and gait attractiveness evaluation

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-012-1319-2. Copyright @ 2012 Springer.Although there has been much previous research on which bodily features are most important in gait analysis, the questions of which features should be extracted from gait, and why these features in particular should be extracted, have not been convincingly answered. The primary goal of the study reported here was to take an analytical approach to answering these questions, in the context of identifying the features that are most important for gait recognition and gait attractiveness evaluation. Using precise 3D gait motion data obtained from motion capture, we analyzed the relative motions from different body segments to a root marker (located on the lower back) of 30 males by the fixed root method, and compared them with the original motions without fixing root. Some particular features were obtained by principal component analysis (PCA). The left lower arm, lower legs and hips were identified as important features for gait recognition. For gait attractiveness evaluation, the lower legs were recognized as important features.Dorothy Hodgkin Postgraduate Award and HEFCE

    Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed.</p> <p>Methods</p> <p>Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals.</p> <p>Results</p> <p>TW did not modify kinematic gait variability as compared to OW (multivariate T<sup>2</sup>, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T<sup>2 </sup>p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94).</p> <p>Conclusions</p> <p>Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design.</p

    Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis

    Get PDF
    BACKGROUND: Cardiac autonomic neuropathy (CAN) in diabetes has been called a "silent killer", because so few patients realize that they suffer from it, and yet its effect can be lethal. Early sub clinical detection of CAN and intervention are of prime importance for risk stratification in preventing sudden death due to silent myocardial infarction. This study presents the usefulness of heart rate variability (HRV) and complexity analyses from short term ECG recordings as a screening tool for CAN. METHODS: A total of 17 sets of ECG recordings during supine rest were acquired from diabetic subjects with CAN (CAN+) and without CAN (CAN-) and analyzed. Poincaré plot indexes as well as traditional time and frequency, and the sample entropy (SampEn) measure were used for analyzing variability (short and long term) and complexity of HRV respectively. RESULTS: Reduced (p > 0.05)_Poincaré plot patterns and lower (p < 0.05) SampEn values were found in CAN+ group, which could be a practical diagnostic and prognostic marker. Classification Trees methodology generated a simple decision tree for CAN+ prediction including SampEn and Poincaré plot indexes with a sensitivity reaching 100% and a specificity of 75% (percentage of agreement 88.24%). CONCLUSION: Our results demonstrate the potential utility of SampEn (a complexity based estimator) of HRV in identifying asymptomatic CAN

    Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings

    Full text link
    Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular morbidity as well as excessive daytime sleepiness and poor quality of life. In this study, we apply a machine learning technique [support vector machines (SVMs)] for automated recognition of OSAS types from their nocturnal ECG recordings. A total of 125 sets of nocturnal ECG recordings acquired from normal subjects (OSAS - ) and subjects with OSAS (OSAS +), each of approximately 8 h in duration, were analyzed. Features extracted from successive wavelet coefficient levels after wavelet decomposition of signals due to heart rate variability (HRV) from RR intervals and ECG-derived respiration (EDR) from R waves of QRS amplitudes were used as inputs to the SVMs to recognize OSAS +/- subjects. Using leave-one-out technique, the maximum accuracy of classification for 83 training sets was found to be 100% for SVMs using a subset of selected combination of HRV and EDR features. Independent test results on 42 subjects showed that it correctly recognized 24 out of 26 OSAS + subjects and 15 out of 16 OSAS - subjects (accuracy = 92.85%; Cohen's kappa value of 0.85). For estimating the relative severity of OSAS, the posterior probabilities of SVM outputs were calculated and compared with respective apnea/hypopnea index. These results suggest superior performance of SVMs in OSAS recognition supported by wavelet-based features of ECG. The results demonstrate considerable potential in applying SVMs in an ECG-based screening device that can aid a sleep specialist in the initial assessment of patients with suspected OSAS.3

    Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy

    Get PDF
    Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE) was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26-31 weeks) and late (32-41 weeks) gestation compared to early (16-25 weeks) gestation (Mann Whitney Wilcoxon (MWW) p<0.05). TE further increased from mid to late, for the fetuses with RMSSD of fetal heart rate being larger than 4 msec in the late gestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03) from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being
    corecore