8 research outputs found
Hepatic alterations are accompanied by changes to bile acid transporter-expressing neurons in the hypothalamus after traumatic brain injury
Annually, there are over 2 million incidents of traumatic brain injury (TBI) and treatment options are non-existent. While many TBI studies have focused on the brain, peripheral contributions involving the digestive and immune systems are emerging as factors involved in the various symptomology associated with TBI. We hypothesized that TBI would alter hepatic function, including bile acid system machinery in the liver and brain. The results show activation of the hepatic acute phase response by 2 hours after TBI, hepatic inflammation by 6 hours after TBI and a decrease in hepatic transcription factors, Gli 1, Gli 2, Gli 3 at 2 and 24 hrs after TBI. Bile acid receptors and transporters were decreased as early as 2 hrs after TBI until at least 24 hrs after TBI. Quantification of bile acid transporter, ASBT-expressing neurons in the hypothalamus, revealed a significant decrease following TBI. These results are the first to show such changes following a TBI, and are compatible with previous studies of the bile acid system in stroke models. The data support the emerging idea of a systemic influence to neurological disorders and point to the need for future studies to better define specific mechanisms of action
A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction
Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acidinduced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5dihydroxybenzoic acid to a range of 2,5substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholineinduced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF2 and H2DCFDA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RTPCR and western blotting were utilized to measure Akt, eNOS, Nrf2, NQO1 and HO1 expression. Results: Ex vivo endotheliumdependent relaxation was significantly improved by the glycomimetics under palmitateinduced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitateinduced oxidative stress and enhanced NO production. We demonstrate that the protective effects of preincubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROSinduced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease