21 research outputs found

    Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    Get PDF
    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD

    Fatores Interferentes na Interpretação de Dosagens Laboratoriais no Diagnóstico de Hiper e Hipotireoidismo

    Full text link

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Tubular proteinuria defined by a study of Dent's (CLCN5 mutation) and other tubular diseases.

    Get PDF
    Tubular proteinuria defined by a study of Dent's ( CLCN5 mutation) and other tubular diseases. BACKGROUND: The term "tubular proteinuria" is often used interchangeably with "low molecular weight proteinuria" (LMWP), although the former implies a definite etiology. A specific quantitative definition of tubular proteinuria is needed, and we address this by studying five different renal disorders. METHODS: Tubular proteinuria was assessed by measuring urinary retinol-binding protein (RBP), beta2-microglobulin (beta2M), alpha1-microglobulin (alpha1M), and albumin in 138 patients: 26 affected males and 24 female carriers of the X-linked syndrome "Dent's disease," 6 patients with other Fanconi syndromes, 17 with distal renal tubular acidosis (dRTA), 39 with glomerulonephritis (GN), and 26 with Chinese herbs nephropathy (CHN). RESULTS: RBP was better than beta2M or alpha1M in identifying the tubular proteinuria of Dent's disease. Median urinary RBP levels in mg/mmol creatinine were: affected male Dent's, 18.2, N = 26; carrier female Dent's, 0. 30, N = 24; dRTA, 0.027, N = 17; GN, 0.077, N = 39; and normal adults, 0.0079, N = 61. Elevated urinary RBP (&gt;0.017) and albumin &lt; (10 x RBP) + 2 identified all patients with the LMWP of Dent's disease and clearly distinguished their LMWP from that of dRTA and GN. This is a quantitative definition of tubular proteinuria. Consistent with this definition, 80% of those patients with CHN who had an elevated RBP had tubular proteinuria. Urinary RBP and albumin in carriers of Dent's disease were strikingly correlated over a 100-fold range (R = 0.933). CONCLUSION: The combination of elevated urinary RBP (&gt;0.017) and albumin &lt; (10 x RBP) + 2 (mg protein/mmol creatinine) is a quantitative definition of tubular proteinuria. Furthermore, our findings suggest that a shared defect in tubular RBP and albumin reuptake causes this form of proteinuria
    corecore