106 research outputs found

    Microparticles as Potential Mediators of High Glucose-Induced Renal Cell Injury.

    Get PDF
    Diabetic nephropathy (DN) is the most common cause of chronic kidney disease worldwide. Activation of signaling pathways such as the mammalian target of rapamycin (mTOR), extracellular signal-regulated kinases (ERK), endoplasmic reticulum (ER) stress, transforming growth factor-beta (TGF-β), and epithelial-mesenchymal transition (EMT), are thought to play a significant role in the etiology of DN. Microparticles (MPs), the small membrane vesicles containing bioactive signals shed by cells upon activation or during apoptosis, are elevated in diabetes and were identified as biomarkers in DN. However, their exact role in the pathophysiology of DN remains unclear. Here, we examined the effect of MPs shed from renal proximal tubular cells (RPTCs) exposed to high glucose conditions on naïve RPTCs in vitro Our results showed significant increases in the levels of phosphorylated forms of 4E-binding protein 1 and ERK1/2 (the downstream targets of mTOR and ERK pathways), phosphorylated-eIF2α (an ER stress marker), alpha smooth muscle actin (an EMT marker), and phosphorylated-SMAD2 and nuclear translocation of SMAD4 (markers of TGF-β signaling). Together, our findings indicate that MPs activate key signaling pathways in RPTCs under high glucose conditions. Pharmacological interventions to inhibit shedding of MPs from RPTCs might serve as an effective strategy to prevent the progression of DN

    Protein Tyrosine Phosphatase (PTP) 1B Inhibition Improves Endoplasmic Reticulum Stress-Induced Apoptosis and Impaired Angiogenic Response in Endothelial Cells

    Get PDF
    Insulin is not only important for glucose homeostasis, but also plays a critical role in the activation of endothelial nitric oxide synthase (eNOS) to synthesize nitric oxide (NO) and keeping the endothelium functional. Conditions which result in insulin resistance, such as diabetes and obesity, cause impairment of endothelial function, a condition known as endothelial dysfunction that features a reduced release of NO. Protein tyrosine phosphatase (PTP) 1B, is a known negative regulator of insulin receptor, that has been implicated in the pathogenesis of insulin resistance and endothelial dysfunction. Owing to its critical location at the surface of the endoplasmic reticulum (ER), PTP1B has been found to play an important role in ER stress response. However, the role of ER stress in PTP1B-mediated endothelial dysfunction is not fully elucidated. Toa address this, ER stress was induced pharmacologically in endothelial cells using thapsigargin, in the presence or absence of either a small molecule inhibitor of PTP1B or silencing siRNA duplexes, followed by the assessment of the expression of key ER stress markers, angiogenic capacity and apoptotic signals. We report here, that PTP1B inhibition protected cells against ER stress and ER stress-induced impairment in eNOS activation and angiogenic capacity. PTP1B inhibition or silencing also protected against ER stress-induced endothelial cell apoptosis. Moreover, PTP1B blockade also suppressed ER stress-activated autophagy. Our data emphasize on the critical role of PTP1B in ER stress-mediated endothelial cell dysfunction and highlights the therapeutic potential of PTP1B inhibition against ER stress-mediated cell death and impairment of endothelial function to prevent cardiovascular disease in pathologies charactereized by the activation of ER stress such as diabetes

    Selenium and Health: An Update on the Situation in the Middle East and North Africa.

    Get PDF
    Selenium (Se) is an important trace element that should be present in the diet of all age groups to provide an adequate intake. Se is incorporated in 25 known selenoproteins, which mediate the biological effects of Se including, immune response regulation, maintenance of thyroid function, antioxidant defense, and anti-inflammatory actions. A balanced intake of Se is critical to achieve health benefits because depending on its status, Se has been found to play physiological roles or contribute to the pathophysiology of various diseases including, neurodegenerative diseases, diabetes, cancer, and cardiovascular disorders. Se status and intake are very important to be known for a specific population as the levels of Se are highly variable among different populations and regions. In the Middle East and North African (MENA) region, very little is known about the status of Se. Studies available show that Se status is widely variable with some countries being deficient, some over sufficient, and some sufficient. This variability was apparent even within the same country between regions. In this review, we summarized the key roles of Se in health and disease and discussed the available data on Se status and intake among countries of the MENA region

    The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance.

    Get PDF
    Endothelial dysfunction is a key feature of cardiovascular disorders associated with obesity and diabetes. Several studies identified protein tyrosine phosphatase (PTP)-1B, a member of the PTP superfamily, as a major negative regulator for insulin receptor signaling and a novel molecular player in endothelial dysfunction and cardiovascular disease. Unlike other anti-diabetic approaches, genetic deletion or pharmacological inhibition of PTP1B was found to improve glucose homeostasis and insulin signaling without causing lipid buildup in the liver, which represents an advantage over existing therapies. Furthermore, PTP1B was reported to contribute to cardiovascular disturbances, at various molecular levels, which places this enzyme as a unique single therapeutic target for both diabetes and cardiovascular disorders. Synthesizing selective small molecule inhibitors for PTP1B is faced with multiple challenges linked to its similarity of sequence with other PTPs; however, overcoming these challenges would pave the way for novel approaches to treat diabetes and its concurrent cardiovascular complications. In this review article, we summarized the major roles of PTP1B in cardiovascular disease with special emphasis on endothelial dysfunction and its interplay with insulin resistance. Furthermore, we discussed some of the major challenges hindering the synthesis of selective inhibitors for PTP1B

    Metformin Induces Different Responses in Clear Cell Renal Cell Carcinoma Caki Cell Lines.

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is the most common and lethal form of urological cancer diagnosed globally. Mutations of the von Hippel-Lindau tumor-suppressor gene and the resultant overexpression of hypoxia-inducible factor (HIF)-1α protein are considered hallmarks of ccRCC. Persistently activated HIF-1α is associated with increased cell proliferation, angiogenesis, and epithelial⁻mesenchymal transition (EMT), consequently leading to ccRCC progression and metastasis to other organs. However, the status alone cannot predict the differential sensitivity of ccRCC to cancer treatments, which suggests that other molecular differences may contribute to the differential response of ccRCC cells to drug therapies. In this study, we investigated the response to metformin (an antidiabetic drug) of two human ccRCC cell lines Caki-1 and Caki-2, which express wild-type . Our findings demonstrate a differential response between the two ccRCC cell lines studied, with Caki-2 cells being more sensitive to metformin compared to Caki-1 cells, which could be linked to the differential expression of HIF-1 despite both cell lines carrying a wild-type . Our study unveils the therapeutic potential of metformin to inhibit the progression of ccRCC in vitro. Additional preclinical and clinical studies are required to ascertain the therapeutic efficacy of metformin against ccRCC.Qatar University grants QUUG-CPH\2017-2 and QUCG-CPH-2018\2019-

    Heme oxygenase (HO)-1 induction prevents Endoplasmic Reticulum stress-mediated endothelial cell death and impaired angiogenic capacity

    Get PDF
    Most of diabetic cardiovascular complications are attributed to endothelial dysfunction and impaired angiogenesis. Endoplasmic Reticulum (ER) and oxidative stresses were shown to play a pivotal role in the development of endothelial dysfunction in diabetes. Hemeoxygenase-1 (HO-1) was shown to protect against oxidative stress in diabetes; however, its role in alleviating ER stress-induced endothelial dysfunction remains not fully elucidated. We aim here to test the protective role of HO-1 against high glucose-mediated ER stress and endothelial dysfunction and understand the underlying mechanisms with special emphasis on oxidative stress, inflammation and cell death.Human Umbilical Vein Endothelial Cells (HUVECs) were grown in either physiological or intermittent high concentrations of glucose for 5days in the presence or absence of Cobalt (III) Protoporphyrin IX chloride (CoPP, HO-1 inducer) or 4-Phenyl Butyric Acid (PBA, ER stress inhibitor). Using an integrated cellular and molecular approach, we then assessed ER stress and inflammatory responses, in addition to apoptosis and angiogenic capacity in these cells.Our results show that HO-1 induction prevented high glucose-mediated increase of mRNA and protein expression of key ER stress markers. Cells incubated with high glucose exhibited high levels of oxidative stress, activation of major inflammatory and apoptotic responses [nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK)] and increased rate of apoptosis; however, cells pre-treated with CoPP or PBA were fully protected. In addition, high glucose enhanced caspases 3 and 7 cleavage and activity and augmented cleaved poly ADP ribose polymerase (PARP) expression whereas HO-1 induction prevented these effects. Finally, HO-1 induction and ER stress inhibition prevented high glucose-induced reduction in NO release and impaired the angiogenic capacity of HUVECs, and enhanced vascular endothelial growth factor (VEGF)-A expression.Altogether, we show here the critical role of ER stress-mediated cell death in diabetes-induced endothelial dysfunction and impaired angiogenesis and underscore the role of HO-1 induction as a key therapeutic modulator for ER stress response in ischemic disorders and diabetes. Our results also highlight the complex interplay between ER stress response and oxidative stress.This work was supported with grants to Dr Abdelali Agouni from the Royal Society, the Physiological Society, and Qatar University (grant QUUG-CPH-CPH-15/16-6). Mr Maamoun and Ms. Zachariah are supported by doctoral scholarships from Egyptian cultural bureau and Government of Botswana, respectively

    High Selenium Intake is Associated with Endothelial Dysfunction: Critical Role for Endoplasmic Reticulum Stress

    Get PDF
    Selenium is associated with insulin resistance and may therefore affect endothelial function, increasing type II diabetes risk and associated cardiovascular-disease risk. However the underpinning molecular mechanisms involved are not clear. High selenium doses cause apoptosis in some cancer cells through the induction of endoplasmic reticulum (ER) stress response, a mechanism also involved in the pathogenesis of insulin resistance and endothelial dysfunction (ED). Thus we hypothesised that high selenium intake could cause ED through ER stress. Endothelial cells were treated with selenite (0.5–20 μM) in the presence or absence of the ER chemical chaperone, 4-phenylbutryic acid (PBA). High selenium concentrations (5–10 μM of selenite) compared to physiological concentration (0.5 μM) enhanced mRNA expression of several pro-apoptotic ER stress markers; such as activating transcription factor-4 (ATF4) and CAAA/enhanced-binding homologous protein (CHOP). In addition, Griess assay showed that high selenite treatment (5–20 μM) reduced NO production. Moreover, flow cytometry assays showed that high selenium enhanced ROS production and apoptosis in cells. Finally, supra-nutritional concentrations of selenite increased caspases 3/7 activity in endothelial cells compared to the physiological concentration. Interestingly, the pre-incubation of cells with PBA completely reversed all the effects of high selenium indicating the involvement of ER stress response. Overall, we show here that high selenium treatment causes endothelial dysfunction and cell death through the activation of ER stress response. These results highlight the importance of a balanced selenium intake in order to achieve maximal health benefits. These findings also underscore the importance to monitor cardiovascular risk development in cancer patients supplemented with high amounts of selenium as part of their chemotherapeutic intervention.qscienc

    Heme Oxygenase (HO)-1 Induction Prevents Endoplasmic Reticulum Stress-Mediated Endothelial Cell Death and Dysfunction

    Get PDF
    Diabetes is intimately associated with cardiovascular complications. Much evidence highlighted the complex interplay between Endoplasmic Reticulum (ER) stress and oxidative stress in the pathogenesis of diabetes. Hemeoxygenase-1 (HO-1) induction was shown to protect against oxidative stress in diabetes; however the underlying molecular mechanisms have not yet been fully elucidated. We aim in this project to test the hypothesis that HO-1 induction will protect against high glucose-mediated ER stress and oxidative stress in endothelial cells and will enhance cell survival. Endothelial cells were cultured in physiological or high concentrations of glucose in the presence of cobalt protoporphyrin 1X (CoPP, HO-1 inducer), 4-phenylbutyrate (PBA, chemical chaperone to inhibit ER stress) or vehicle. Then, ER stress response was assessed (PCR, western blot). The productions of ROS (flow cytometer) and NO (Griess assay) were analysed. Also, apoptosis and caspase 3/7 activity were assessed. High glucose treatment in cells increased protein and mRNA expression of several ER stress response markers (BIP, CHOP, ATF4) and enhanced ROS production in addition to reducing NO release. Interestingly, the pre-treatment of cells with PBA or CoPP significantly reduced high glucose-mediated ER stress and oxidative stress in cells. Also, cells incubated with high glucose had enhanced apoptosis, increased protein expression of cleaved PARP and caspase-7 in addition to enhanced caspases 3/7 activity while cells pre-treated with either PBA or CoPP were totally protected. The mRNA expression of inflammatory cytokine IL-6 was enhanced in cells incubated with high glucose while those pre-treated with PBA or CoPP were prevented. These results highlight the importance of oxidative stress both in initiating or maintaining ER stress response and in mediating ER stress-induced damage and cell death in endothelial cells. This work also underscores the therapeutic potential of HO-1 induction against hyperglycaemia-mediated endothelial dysfunction.qscienc
    corecore