15 research outputs found

    The tumor suppressor gene FBXW7 is disrupted by a constitutional t(3;4)(q21;q31) in a patient with renal cell cancer

    No full text
    FBXW7 (alias CDC4) is a p53-dependent tumor suppressor gene that exhibits mutations or deletions in a variety of human tumors. Mutation or deletion of the FBXW7 gene has been associated with an increase in chromosomal instability and cell cycle progression. In addition, the FBXW7 protein has been found to act as a component of the ubiquitin proteasome system and to degrade several oncogenic proteins that function in cellular growth regulatory pathways. By using a rapid breakpoint cloning procedure in a case of renal cell cancer (RCC), we found that the FBXW7 gene was disrupted by a constitutional t(3;4)(q21;q31). Subsequent analysis of the tumor tissue revealed the presence of several anomalies, including loss of the derivative chromosome 3. Upon screening of a cohort of 29 independent primary RCCs, we identified one novel pathogenic mutation, suggesting that the FBXW7 gene may also play a role in the development of sporadic RCCs. In addition, we screened a cohort of 48 unrelated familial RCC cases with unknown etiology. Except for several known or benign sequence variants such as single nucleotide polymorphisms (SNPs), no additional pathogenic variants were found. Previous mouse models have suggested that the FBXW7 gene may play a role in the predisposition to tumor development. Here we report that disruption of this gene may predispose to the development of human RCC

    Allosteric activation transitions in enzymes and biomolecular motors: insights from atomistic and coarse-grained simulations

    Get PDF
    The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In simple enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for cracking in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again hinting at the intimate connection between protein stability and functional flexibility. Finally, a number of topics of considerable future interest are briefly discussed

    Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS

    No full text
    The mechanistic understanding of how membrane-embedded sensor kinases recognize signals and regulate kinase activity is currently limited. Here we report structure-function relationships of the multidomain membrane sensor kinase DcuS using solidstate NMR, structural modeling and mutagenesis. Experimental data of an individual cytoplasmic Per-Arnt-Sim (PAS) domain were compared to structural models generated in silico. These studies, together with previous NMR work on the periplasmic PAS domain, enabled structural investigations of a membrane-embedded 40-kDa construct by solid-state NMR, comprising both PAS segments and the membrane domain. Structural alterations are largely limited to protein regions close to the transmembrane segment. Data from isolated and multidomain constructs favor a disordered N-terminal helix in the cytoplasmic domain. Mutations of residues in this region strongly influence function, suggesting that protein flexibility is related to signal transduction toward the kinase domain and regulation of kinase activity
    corecore