26 research outputs found
The structural basis of cephalosporin formation in a mononuclear ferrous enzyme
Deacetoxycephalosporin-C synthase (DAOCS) is a mononuclear ferrous enzyme that transforms penicillins into cephalosporins by inserting a carbon atom into the penicillin nucleus. In the first half-reaction, dioxygen and 2-oxoglutarate produce a reactive iron-oxygen species, succinate and CO2. The oxidizing iron species subsequently reacts with penicillin to give cephalosporin and water. Here we describe high-resolution structures for ferrous DAOCS in complex with penicillins, the cephalosporin product, the cosubstrate and the coproduct. Steady-state kinetic data, quantum-chemical calculations and the new structures indicate a reaction sequence in which a âbooby-trappedâ oxidizing species is formed. This species is stabilized by the negative charge of succinate on the iron. The binding sites of succinate and penicillin overlap, and when penicillin replaces succinate, it removes the stabilizing charge, eliciting oxidative attack on itself. Requisite groups of penicillin are within 1 Ă
of the expected position of a ferryl oxygen in the enzymeâpenicillin complex.
Immunophenotyping invasive breast cancer: paving the road for molecular imaging.
Contains fulltext :
108226.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. METHODS: Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. RESULTS: The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. CONCLUSIONS: In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate
Inert coupling of IRDye800CW and zirconium-89 to monoclonal antibodies for single- or dual-mode fluorescence and PET imaging
<p>IRDye800CW and zirconium-89 (Zr-89) have very attractive properties for optical imaging and positron emission tomography (PET) imaging, respectively. Here we describe a procedure for dual labeling of mAbs with IRDye800CW and Zr-89 in a current good manufacturing practice (cGMP)-compliant way. IRDye800CW and Zr-89 are coupled inertly, without impairment of immunoreactivity and pharmacokinetics of the mAb. Organ and whole-body distribution of the final product can be assessed by optical and PET imaging, respectively. For this purpose, a minimal amount of the chelate N-succinyldesferrioxamine (N-sucDf) is first conjugated to the mAb. Next, N-sucDf-mAb is conjugated with IRDye800CW, after which the N-sucDf-mAb-IRDye800CW is labeled with Zr-89. After each of these three steps, the product is purified by gel filtration. The sequence of this process avoids unnecessary radiation exposure to personnel and takes about 5 h. The process can be scaled up by the production of large batches of premodified mAbs that can be dispensed and stored until they are labeled with Zr-89.</p>
Use of Panitumumab-IRDye800 to Image Microscopic Head and Neck Cancer in an Orthotopic Surgical Model
BACKGROUND: Fluorescence imaging hardware (SPY) has recently been developed for intraoperative assessment of blood flow via detection of probes emitting in the near-infrared (NIR) spectrum. This study sought to determine if this imaging system was capable of detecting micrometastatic head and neck squamous cell carcinoma (HNSCC) in preclinical models. METHODS: A NIR fluorescent probe (IRDye800CW) was covalently linked to a monoclonal antibody targeting EGFR (panitumumab) or non-specific IgG. HNSCC flank (SCC-1) and orthotopic (FADU and OSC19) xenografts were imaged 48-96hrs following systemic injection of labeled panitumumab or IgG. The primary tumor and regional lymph nodes were dissected using fluorescence guidance with the SPY system and grossly assessed with a charge-coupled NIR system (Pearl). Histologic slides were also imaged with a NIR charged-coupled device (Odyssey) and fluorescence intensity was correlated with pathologic confirmation of disease. RESULTS: Orthotopic tongue tumors were clearly delineated from normal tissue with tumor-to-background ratios of 2.9(Pearl) and 2.3(SPY). Disease detection was significantly improved with panitumumab-IRDye compared to IgG-IRDye800 (P<0.05). Tissue biopsies (average size=3.7mm) positive for fluorescence were confirmed for pathologic disease by histology and immunohistochemistry (n=25/25). Biopsies of non-fluorescent tissue were proven to be negative for malignancy (n=28/28). The SPY was able to detect regional lymph node metastasis (<1.0mm) and microscopic areas of disease. Standard histological assessment in both frozen and paraffin-embedded histologic specimens was augmented using the Odyssey. CONCLUSIONS: Panitumumab-IRDye800 may have clinical utility in detection and removal of microscopic HNSCC using existing intraoperative optical imaging hardware and may augment analysis of frozen and permanent pathology