23 research outputs found

    A polymeric aqueous tacrolimus formulation for topical ocular delivery

    Get PDF
    Tacrolimus (TAC) suspension is used to treat moderate to severe atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC). The objectives of this study were to formulate the hydrophobic compound TAC (TAC) in an aqueous eye drop formulation and study its ocular biodistribution on topical ocular application to a healthy rabbit model, with the overall aim of using the formulation to treat AKC and VKC. A thin-film hydration method was used to encapsulate TAC within the chitosan-based amphiphile: N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (Molecular Envelope Technology - MET) in an aqueous formulation. The formulation was characterized, and its stability studied under three storage conditions for one month. The ocular distribution of the formulation was studied in healthy rabbits and the ocular tissues and the whole blood analyzed by LC-MS/MS. A 200 nm nanoparticle formulation (MET-TAC) containing 0.1 ± 0.002% w/v TAC was produced with viscosity, osmolarity and pH within the ocular comfort range, and the formulation was stable on refrigeration for one month. On topical application, the TAC concentrations in rabbit cornea and conjunctiva one hour after dosing were 4452 ± 2289 and 516 ± 180 ng/g of tissue, respectively. A topical ocular aqueous TAC eye drop formulation has been prepared with the ability to deliver sufficient drug to the relevant ocular surface tissues

    Inhibition of the hypoxia-inducible factor pathway by a G-quadruplex binding small molecule.

    Get PDF
    The hypoxia-inducible transcription factor (HIF) co-ordinates the response of tumours to low oxygen by stimulating genes involved in metabolism and angiogenesis. HIF pathway activation is associated with decreased progression-free survival and increased mortality; compounds that target this pathway are potential agents for the treatment of a range of solid tumour malignancies. Renal cancers are likely to be particularly sensitive to inhibition of the HIF pathway since ~80% show constitutive activation of HIF. We have previously described the di-substituted naphthalene derivative, CL67, which binds to a G-quadruplex higher-order structure in the HIF promoter sequence in vitro. We show here that CL67 blocks HIF expression leading to inhibition of HIF-transactivation and down-regulation of downstream target genes and proteins in renal carcinoma cell lines and in a mouse xenograft model of renal cancer. This inhibition is independent of pathways that control HIF abundance through oxygen-dependant degradation and oxygen dependant HIF sub-unit expression

    Tissue-Engineering the Fibrous Pancreatic Tumour Stroma Capsule in 3D Tumouroids to Demonstrate Paclitaxel Response

    Get PDF
    Pancreatic cancer is a unique cancer in that up to 90% of its tumour mass is composed of a hypovascular and fibrotic stroma. This makes it extremely difficult for chemotherapies to be delivered into the core of the cancer mass. We tissue-engineered a biomimetic 3D pancreatic cancer ("tumouroid") model comprised of a central artificial cancer mass (ACM), containing MIA Paca-2 cells, surrounded by a fibrotic stromal compartment. This stromal compartment had a higher concentration of collagen type I, fibronectin, laminin, and hyaluronic acid (HA) than the ACM. The incorporation of HA was validated with alcian blue staining. Response to paclitaxel was determined in 2D MIA Paca-2 cell cultures, the ACMs alone, and in simple and complex tumouroids, in order to demonstrate drug sensitivity within pancreatic tumouroids of increasing complexity. The results showed that MIA Paca-2 cells grew into the complex stroma and invaded as cell clusters with a maximum distance of 363.7 µm by day 21. In terms of drug response, the IC50 for paclitaxel for MIA Paca-2 cells increased from 0.819 nM in 2D to 3.02 nM in ACMs and to 5.87 nM and 3.803 nM in simple and complex tumouroids respectively, indicating that drug penetration may be significantly reduced in the latter. The results demonstrate the need for biomimetic models during initial drug testing and evaluation

    Lomustine Nanoparticles Enable Both Bone Marrow Sparing and High Brain Drug Levels – A Strategy for Brain Cancer Treatments

    Get PDF
    Purpose The blood brain barrier compromises glioblastoma chemotherapy. However high blood concentrations of lipophilic, alkylating drugs result in brain uptake, but cause myelosuppression. We hypothesised that nanoparticles could achieve therapeutic brain concentrations without dose-limiting myelosuppression. Methods Mice were dosed with either intravenous lomustine Molecular Envelope Technology (MET) nanoparticles (13 mg kg-1) or ethanolic lomustine (6.5 mg kg-1) and tissues analysed. Efficacy was assessed in an orthotopic U-87 MG glioblastoma model, following intravenous MET lomustine (daily 13 mg kg-1) or ethanolic lomustine (daily 1.2 mg kg-1 - the highest repeated dose possible). Myelosuppression and MET particle macrophage uptake were also investigated. Results The MET formulation resulted in modest brain targeting (brain/ bone AUC0-4h ratios for MET and ethanolic lomustine = 0.90 and 0.53 respectively and brain/ liver AUC0-4h ratios for MET and ethanolic lomustine = 0.24 and 0.15 respectively). The MET formulation significantly increased mice (U-87 MG tumours) survival times; with MET lomustine, ethanolic lomustine and untreated mean survival times of 33.2, 22.5 and 21.3 days respectively and there were no material treatment-related differences in blood and femoral cell counts. Macrophage uptake is slower for MET nanoparticles than for liposomes. Conclusions Particulate drug formulations improved brain tumour therapy without major bone marrow toxicity

    A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer

    Get PDF
    Gemcitabine is currently the standard therapy for pancreatic cancer. However, growing concerns over gemcitabine resistance mean that new combinatory therapies are required to prevent loss of efficacy with prolonged treatment. Here, we suggest that this could be achieved through co-administration of RNA interference agents targeting the ubiquitin ligase ITCH. Stable anti-ITCH siRNA and shRNA dendriplexes with a desirable safety profile were prepared using generation 3 poly(propylenimine) dendrimers (DAB-Am16). The complexes were efficiently taken up by human pancreatic cancer cells and produced a 40-60% decrease in ITCH RNA and protein expression in vitro (si/shRNA) and in a xenograft model of pancreatic cancer (shRNA). When co-administered with gemcitabine (100 mg/kg/week) at a subtherapeutic dose, treatment with ITCH-shRNA (3x 50 mg/week) was able to fully suppress tumour growth for 17 days, suggesting that downregulation of ITCH mediated by DABAm16/shRNA sensitizes pancreatic cancer to gemcitabine in an efficient and specific manner

    Dose-dependent delivery of genes to the cerebral cortex via the nasal route

    No full text
    The use of nucleic acids to treat various brain diseases could offer new therapeutic modalities, providing the nucleic acids may be effectively delivered to areas of the brain using non-toxic vectors. In this study, we present evidence that genes may be successfully delivered in a dose-dependent manner via the nose, primarily to the cerebral cortex using a 6-O-glycolchitosan (GC) formulation of plasmid DNA. Positively charged (zeta potential = +13 - + 25 mV) GC-DNA nanoparticles of 100–500 nm in diameter with favourable cell biocompatibility were shown to deliver the reporter Green Fluorescent Protein (GFP) plasmid to the U87MG cell line and the resulting protein expression was not significantly different from that obtained with Lipofectamine 2000. On intranasal delivery of GC-luciferase-plasmid nanoparticles to Balb/ C mice at 4 doses, ranging from 0.02 to 0.1 mg/ kg, luciferase activity was observed qualitatively in intact mouse brains, 48 h after intranasal, using the IV-VIS visualisation. In further confirmation of brain delivery, dose-dependent protein expression was quantified in multiple brain areas 48 h after dosing; with protein expression seen mainly in the cerebral cortex and striatum and following expression levels: cerebral cortex = olfactory bulb > striatum > brain stem > mid brain = cerebellum. No protein expression was observed in the liver and lungs of dosed animals. GC-DNA protein expression was not significantly different to that observed with Lipofectamine 2000. These results demonstrate that GC-DNA nanoparticles are able to deliver genes preferably to specific brain regions such as the cerebral cortex and striatum; offering the possibility of using genes to treat a range of neurological disorders using a non-invasive method of dosing
    corecore