45 research outputs found

    Homocysteine levels in preterm infants: is there an association with intraventricular hemorrhage? A prospective cohort study.

    Get PDF
    BACKGROUND: The purpose of this study was to characterize total homocysteine (tHcy) levels at birth in preterm and term infants and identify associations with intraventricular hemorrhage (IVH) and other neonatal outcomes such as mortality, sepsis, necrotizing enterocolitis, bronchopulmonary dysplasia, and thrombocytopenia. METHODS: 123 infants \u3c 32 weeks gestation admitted to our Level III nursery were enrolled. A group of 25 term infants were enrolled for comparison. Two blood spots collected on filter paper with admission blood drawing were analyzed by a high performance liquid chromatography (HPLC) method. Statistical analysis included ANOVA, Spearman\u27s Rank Order Correlation and Mann-Whitney U test. RESULTS: The median tHcy was 2.75 micromol/L with an interquartile range of 1.34 - 4.96 micromol/L. There was no difference between preterm and term tHcy (median 2.76, IQR 1.25 - 4.8 micromol/L vs median 2.54, IQR 1.55 - 7.85 micromol/L, p = 0.07). There was no statistically significant difference in tHcy in 31 preterm infants with IVH compared to infants without IVH (median 1.96, IQR 1.09 - 4.35 micromol/L vs median 2.96, IQR 1.51 - 4.84 micromol/L, p = 0.43). There was also no statistically significant difference in tHcy in 7 infants with periventricular leukomalacia (PVL) compared to infants without PVL (median 1.55, IQR 0.25 - 3.45 micromol/L vs median 2.85, IQR 1.34 - 4.82 micromol/L, p = 0.07). Male infants had lower tHcy compared to female; prenatal steroids were associated with a higher tHcy. CONCLUSION: In our population of preterm infants, there is no association between IVH and tHcy. Male gender, prenatal steroids and preeclampsia were associated with differences in tHcy levels

    HFE Gene Variants Modify the Association between Maternal Lead Burden and Infant Birthweight: A Prospective Birth Cohort Study in Mexico City, Mexico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonatal growth is a complex process involving genetic and environmental factors. Polymorphisms in the hemochromatosis (<it>HFE</it>) iron regulatory genes have been shown to modify transport and toxicity of lead which is known to affect birth weight.</p> <p>Methods</p> <p>We investigated the role of <it>HFE C282Y</it>, <it>HFE H63 D</it>, and transferrin <it>(TF) P570 S </it>gene variants in modifying the association of lead and infant birthweight in a cohort of Mexican mother-infant pairs. Subjects were initially recruited between 1994-1995 from three maternity hospitals in Mexico City and 411 infants/565 mothers had archived blood available for genotyping. Multiple linear regression models, stratified by either maternal/infant <it>HFE </it>or <it>TF </it>genotype and then combined with interaction terms, were constructed examining the association of lead and birthweight after controlling for covariates.</p> <p>Results</p> <p>3.1%, 16.8% and 17.5% of infants (N = 390) and 1.9%, 14.5% and 18.9% of mothers (N = 533) carried the <it>HFE C282Y</it>, <it>HFE H63D</it>, and <it>TF P570 S </it>variants, respectively. The presence of infant <it>HFE H63 D </it>variants predicted 110.3 g (95% CI -216.1, -4.6) decreases in birthweight while maternal <it>HFE H63 D </it>variants predicted reductions of 52.0 g (95% CI -147.3 to 43.2). Interaction models suggest that both maternal and infant <it>HFE H63 D </it>genotype may modify tibia lead's effect on infant birthweight in opposing ways. In our interaction models, maternal <it>HFE H63 D </it>variant carriers had a negative association between tibia lead and birthweight.</p> <p>Conclusions</p> <p>These results suggest that the <it>HFE H63 D </it>genotype modifies lead's effects on infant birthweight in a complex fashion that may reflect maternal-fetal interactions with respect to the metabolism and transport of metals.</p
    corecore