21 research outputs found

    Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: an untargeted lipidomic study

    Get PDF
    Cervical cancer is still an important issue of public health since it is the fourth most frequent type of cancer in women worldwide. Much effort has been dedicated to combating this cancer, in particular by the early detection of cervical pre-cancerous lesions. For this purpose, this paper reports the use of mass spectrometry coupled with multivariate analysis as an untargeted lipidomic approach to classifying 76 blood plasma samples into negative for intraepithelial lesion or malignancy (NILM, n = 42) and squamous intraepithelial lesion (SIL, n = 34). The crude lipid extract was directly analyzed with mass spectrometry for untargeted lipidomics, followed by multivariate analysis based on the principal component analysis (PCA) and genetic algorithm (GA) with support vector machines (SVM), linear (LDA) and quadratic (QDA) discriminant analysis. PCA-SVM models outperformed LDA and QDA results, achieving sensitivity and specificity values of 80.0% and 83.3%, respectively. Five types of lipids contributing to the distinction between NILM and SIL classes were identified, including prostaglandins, phospholipids, and sphingolipids for the former condition and Tetranor-PGFM and hydroperoxide lipid for the latter. These findings highlight the potentiality of using mass spectrometry associated with chemometrics to discriminate between healthy women and those suffering from cervical pre-cancerous lesions

    Loss of protein phosphatase 2A regulatory subunit B56δ promotes spontaneous tumorigenesis in vivo.

    No full text
    Protein Phosphatase 2A (PP2A) enzymes counteract diverse kinase-driven oncogenic pathways and their function is frequently impaired in cancer. PP2A inhibition is indispensable for full transformation of human cells, but whether loss of PP2A is sufficient for tumorigenesis in vivo has remained elusive. Here, we describe spontaneous tumor development in knockout mice for Ppp2r5d, encoding the PP2A regulatory B56δ subunit. Several primary tumors were observed, most commonly, hematologic malignancies and hepatocellular carcinomas (HCCs). Targeted immunoblot and immunohistochemistry analysis of the HCCs revealed heterogeneous activation of diverse oncogenic pathways known to be suppressed by PP2A-B56. RNA sequencing analysis unveiled, however, a common role for oncogenic c-Myc activation in the HCCs, independently underscored by c-Myc Ser62 hyperphosphorylation. Upstream of c-Myc, GSK-3β Ser9 hyperphosphorylation occurred both in the HCCs and non-cancerous B56δ-null livers. Thus, uncontrolled c-Myc activity due to B56δ-driven GSK-3β inactivation is the likely tumor predisposing factor. Our data provide the first compelling mouse genetics evidence sustaining the tumor suppressive activity of a single PP2A holoenzyme, constituting the final missing incentive for full clinical development of PP2A as cancer biomarker and therapy target.Oncogene advance online publication, 2 October 2017; doi:10.1038/onc.2017.350

    Molecular mechanisms underlying deregulation of C/EBP alpha in acute myeloid leukemia

    No full text
    The CEBPA gene encodes a transcription factor protein that is crucial for granulocytic differentiation, regulation of myeloid gene expression and growth arrest. Mutations in one or both alleles of CEBPA are observed in about 10% of patients with acute myeloid leukemia (AML). Moreover, other genetic events associated with AML have been identified to deregulate C/EBP alpha expression and function at various levels. Recently developed mouse models that accurately mimic the genetic C/EBP alpha alterations in human AML demonstrate C/EBP alpha's gatekeeper function in the control of self-renewal and lineage commitment of hematopoietic stem cells (HSCs). Moreover, these studies indicate that CEBPA mutations affect HSCs in early leukemia development by inducing proliferation and limiting their lineage potential. However, the exact relationship between 'pre-leukemic' HCSs and those cells that finally initiate leukemia (leukemia-initiating cells) with disturbed differentiation and aberrant proliferation remains elusive. More research is needed to identify and characterize these functionally distinct populations and the exact role of the different genetic alterations in the process of leukemia initiation and maintenance
    corecore