48 research outputs found

    Photoacclimation in Dunaliella tertiolecta reveals a unique NPQ pattern upon exposure to irradiance

    Get PDF
    Highly time-resolved photoacclimation patterns of the chlorophyte microalga Dunaliella tertiolecta during exposure to an off–on–off (block) light pattern of saturating photon flux, and to a regime of consecutive increasing light intensities are presented. Non-photochemical quenching (NPQ) mechanisms unexpectedly responded with an initial decrease during dark–light transitions. NPQ values started to rise after light exposure of approximately 4 min. State-transitions, measured as a change of PSII:PSI fluorescence emission at 77 K, did not contribute to early NPQ oscillations. Addition of the uncoupler CCCP, however, caused a rapid increase in fluorescence and showed the significance of qE for NPQ. Partitioning of the quantum efficiencies showed that constitutive NPQ was (a) higher than qE-driven NPQ and (b) responded to light treatment within seconds, suggesting an active role of constitutive NPQ in variable energy dissipation, although it is thought to contribute statically to NPQ. The PSII connectivity parameter p correlated well with F′, Fm′ and NPQ during the early phase of the dark–light transients in sub-saturating light, suggesting a plastic energy distribution pattern within energetically connected PSII centres. In consecutive increasing photon flux experiments, correlations were weaker during the second light increment. Changes in connectivity can present an early photoresponse that are reflected in fluorescence signals and NPQ and might be responsive to the short-term acclimation state, and/or to the actinic photon flux

    In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation

    Get PDF
    Background. In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment. Principal Findings. In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra. Conclusions. This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family

    Fluorescence as a tool to understand changes in photosynthetic electron flow regulation

    Get PDF
    International audienceThe physiological state of a chloroplast is stronglyinfluenced by both biotic and abiotic conditions.Unfavourable growth conditions lead to photosyntheticstress. Chlorophyll a fluorescence is a widelyused probe of photosynthetic activity (specificallyPSII), and therefore stress which specifically targetsthe electron transport pathway and associated alternativeelectron cycling pathways. By manipulating theprocesses that control photosynthesis, affecting thechlorophyll a fluorescence, yields detailed insight intothe biochemicalpathways. Light that is captured by achlorophyll molecule can be utilised in three competingprocesses; electron transport, energy dissipation(via heat) and chlorophyll a fluorescence emission.Electrons produced by water-splitting are not alwaysused in carbon fixation; if the incident irradiancegeneratesmore electrons than the dark reactionscan use in carbon fixation, damage will occur to the photosynthetic apparatus. If carbon fixation is inhibitedby temperature or reduced inorganic carbon (Ci), ATPor NADPH availability, then the photosystem dynamicallyadjusts and uses alternate sinks for electrons, suchas molecular oxygen (water-water cycle or Mehler ascorbateperoxidase reaction). The process of stress acclimationleads to a number of photoprotective pathwaysand we describe how inhibitors can be used to identifythese particular processes. In this chapter, we describethe processes controlling electron transport as influencedby light-induced stress
    corecore