27 research outputs found

    Responsiveness of isolated thoracic aorta to norepinephrine and acetylcholine in cold-acclimated rats

    No full text
    We investigated the responses of thoracic aortae to adrenergic contraction and endothelium-dependent relaxation following chronic exposure to cold in rats. Two groups (CA, cold-acclimated for 12 weeks at 5 °C; WA, warm-acclimated for 12 weeks at 24 °C) of 10 male Sprague-Dawley rats were used. After anesthesia, the thoracic aortae (4 mm long) were isolated and the vascular tension was measured with a force transducer. The dose-response relations for aortic responses to norepinephrine (NE), phenylephrine (PE) and acetylcholine (Ach) were determined and compared between the CA and the WA groups. In the CA rats, the thoracic aortae became more sensitive to Ach-induced vasorelaxation. The vascular sensitivities to NE- or PE-induced contraction in the thoracic aortae were lowered. Chronic exposure to cold decreased NE- and PE-induced vasoconstrictive responses and increased Achinduced vasorelaxative response of the isolated thoracic aortae, which were suggested to be due to enhanced release of NE-induced endothelium-derived relaxing factor by up-regulating endothelial α1-adrenoceptors

    Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes

    No full text
    Membrane protein characterization is consistently hampered by challenges with expression, purification, and solubilization. Among several biophysical techniques employed for their characterization, native-mass spectrometry (MS) has emerged as a powerful tool for the analysis of membrane proteins and complexes. Here, two MS platforms, the FT-ICR and Q-ToF, have been explored to analyze the homotetrameric water channel protein, AquaporinZ (AqpZ), under non-denaturing conditions. This 97 kDa membrane protein complex can be readily liberated from the octylglucoside (OG) detergent micelle under a range of instrument conditions on both MS platforms. Increasing the applied collision energy of the FT-ICR collision cell yielded varying degrees of tetramer (97 kDa) liberation from the OG micelles, as well as dissociation into the trimeric (72 kDa) and monomeric (24 kDa) substituents. Tandem-MS on the Q-ToF yielded higher intensity tetramer signal and, depending on the m/z region selected, the observed monomer signal varied in intensity. Precursor ion selection of an m/z range above the expected protein signal distribution, followed by mild collisional activation, is able to efficiently liberate AqpZ with a high S/N ratio. The tetrameric charge state distribution obtained on both instruments demonstrated superpositioning of multiple proteoforms due to varying degrees of N-terminal formylation. Graphical Abstract á…ź
    corecore